Assessment of RBR coda T.ODO performance on long-term deployment and profiling in Bedford Basin

Eric Siegel, Rui Zhang, Mark Halverson, Jon Taylor, Greg Johnson

- T.ODO introduction
- Sensor technology
- Field validations
- Moored
- Profiling
- Applications
- Questions

RBRcoda T.ODO

Optical accuracy and stability similar to Aanderaa Optode
Standard accuracy: $8 \mu \mathrm{~mol} / \mathrm{I}$
High accuracy temperature measurement
Power consumption: only $36 \mathrm{~mJ} / \mathrm{sample}$
Rated to 6000 m
Wiper available for |slow

Time constant options

- |fast
- Standard
- |slow

1s response (profiling)
8s response
30s response (moored)

RBRcoda T.ODO

Optical accuracy and stability similar to Aanderaa Optode Standard accuracy: $8 \mu \mathrm{~mol} / \mathrm{I}$

High accuracy temperature measurement
Power consumption: only $36 \mathrm{~mJ} /$ sample
Rated to 6000 m
Wiper available for |slow

Interface

- RS-232 polled or autonomous streaming

Output values

- Temperature $\left({ }^{\circ} \mathrm{C}\right)$
- Dissolved O2 concentration ($\mu \mathrm{mol} / \mathrm{l}$)
- Dissolved O2 concentration (salinity comp ($\mu \mathrm{mol} / \mathrm{l})$)
- Dissolved O2 saturation (\%)
- Dissolved O2 phase (${ }^{\circ}$)

RBRdueit ${ }^{\text {³ }}$

RBRduet³ T.ODO

Optical accuracy and stability similar to Aanderaa Optode
Standard accuracy: $8 \mu \mathrm{~mol} / \mathrm{l}$
High accuracy temperature measurement
Power consumption: only $36 \mathrm{~mJ} /$ sample
Rated to 6000 m

Time constant options

- |fast
- Standard
- |slow

1s response (profiling)
8s response
30s response (moored)

Sensor Technology

Luminescence quenching by molecular oxygen

2

PreSens

RBR

RBRcoda T.ODO

|fast

- Tau ~1sec (Temperature dependent)
- Drift $<0.6 \mu \mathrm{~mol} / \mathrm{l}$ per month (2.5 million samples)
regular \& |slow
- Tau ~8, 30 sec (Temperature dependent)
- Drift - negligible

RBR coda T.ODO - Calibration

Dissolved Oxygen calibration

- 49 plateaus
- Temperature range: $1.5-30^{\circ} \mathrm{C}$
- Saturation: 0-120\%
- Residuals: < $4 \mu \mathrm{~mol} / \mathrm{l}$

Temperature

- Accuracy: $0.002{ }^{\circ} \mathrm{C}$
- Range: -5 to $35^{\circ} \mathrm{C}$

RBRcoda T.ODO - Customer calibration

Eq. 2

$$
C(t, \phi)=\left[\begin{array}{lllll}
\phi^{0} & \phi^{1} & \phi^{2} & \phi^{3} & \phi^{4}
\end{array}\right]\left[\begin{array}{llll}
c_{00} & c_{01} & c_{02} & c_{03} \\
c_{10} & c_{11} & c_{12} & c_{13} \\
c_{20} & c_{21} & c_{22} & c_{23} \\
c_{30} & c_{31} & c_{32} & c_{33} \\
c_{40} & c_{41} & c_{42} & c_{43}
\end{array}\right]\left[\begin{array}{l}
t^{0} \\
t^{1} \\
t^{2} \\
t^{3}
\end{array}\right]
$$

Eq. 4

$$
F_{C S}=\mathrm{e}^{\left(S\left(\sum_{i=0}^{3} G_{b i} t_{s}^{i}\right)+G_{c 0} S^{2}\right)}
$$

Eq. 5

$$
F_{c p}=1+P \times C_{p}
$$

Eq. 6

$$
C_{C}=C_{u} \times F_{C D} \times F_{C S}
$$

RBR

Field Validations

Why Bedford Basin?

Mooring

RBR
Deployed in partnership between Dalhousie University and DFO Bedford Institute of Oceanography

Mooring

- RBRcoda T.ODO|slow (30s time constant)
- SBE-37 CTD
- 60m depth
- Sep - Dec 2018
- Sample at 1 Hz for the first minute of every hour

Profiling

- Bedford Basin Monitoring Program
- Weekly vertical profiles over mooring
- Date: Oct 24, 2018
- Instruments:
- RBRcoda T.ODO (8s time constant)
- RBRcoda T.ODO|fast (1s time constant)
- SBE-25 CTD
- SBE-43 DO
- Water bottles

Instruments and deployment

Results - Mooring

Dissolved 02

Results - Profiling

Results - Profiling

$$
T=T_{m}+\tau \frac{d T_{m}}{d t}
$$

Field Validation Summary

> T.ODO|slow - Stable for mooring application
> T.ODO|fast - Accurate for profiling application
$>$ T.ODO standard - Expected time constant lag during profiling which can be improved in post-processing

Acknowledgements

- Coastal Environmental Observation Technology and Research (Dalhousie University)
- Richard Davis, Madison Evans, Darrell Adams, Anna Haverstock
- Bedford Institute of Oceanography
- Clark Richards, Kevin Pauley, Andrew Cogswell, Peter Thamer
- Captain and crew of Sigma T

Fisheries and Oceans Canada

Applications

Applications

T.ODO|fast

Vertical Profiling

Vehicles
\& Floats
T.ODO|slow

Moorings

Vertical Profiling

T.ODO|fast

RBR

Vertical Profiling

Photo from Nature Trust of British Columbia

T.ODO|fast

RBR

Vehicles and Floats

T.ODO

Vehicles and Floats

RBR/egato CTD

T.ODO

Vehicles and Floats

T.ODO

Data from AMT

Vehicles and Floats

T.ODO

Moorings

Photo from UC Davis Tahoe Environmental Research Center

Zebra-Tech Hydro-Wiper
T.ODO|slow

RBR

Thank You

Contact Us

RBR
rbr-global.com
info@rbr-global.com
+1 6135998900

