

RBR#0005199revL

L3 command reference

RBR#0005199revL - 2

1 Table of Contents
1 Table of Contents...2

2 Introduction ...8
2.1 Document version history ... 9

2.2 Formatting.. 13

2.3 Security... 14

2.4 Command Processing and Timeouts .. 15
2.4.1 Command Entry ...15

2.4.2 Timeouts, Output Blanking and Power Saving ..16

2.4.3 Parsing logger responses...17

2.4.4 Parameter Modification...19

3 Quick start ..20
3.1 General overview ... 21
3.1.1 Channels ...21

3.1.2 Acquiring samples..21

3.2 Enabling continuous sampling.. 22

3.3 Enabling wave sampling.. 23

3.4 Serial streaming from serial port .. 24
3.4.1 Setting the correct baud rate ..24

3.4.2 Enabling the serial streaming..24

3.5 Download stored data ... 26

3.6 Downloading an EasyParse dataset.. 27
3.6.1 Starting a deployment using EasyParse ...27

3.6.2 Downloading the dataset ..27

3.7 Integrating with a profiling float ... 29
3.7.1 Introduction ...29

3.7.2 Buoyancy control ...29

3.7.3 Setup for ascent, enable logging...30

3.7.4 End of ascent, disable logging and download data ...32

3.7.5 More details on the calculation ...32

3.7.6 Available output channels ...33

3.7.7 Post-processing onboard ..33

3.7.8 Providing platform details to end-users ...35

RBR#0005199revL - 3

3.7.9 Sensor drift monitoring at surface ..35

3.7.10 Energy tracking ..35

3.8 High resolution BPR and frequency counters for cabled ocean observatories 36
3.8.1 Introduction ...36

3.8.2 Deploying a frequency counter/BPR logger running continuously at 1Hz and streaming over serial36

3.8.3 BPR channels..37

3.8.4 Operating an RBRquartz³ BPR|zero instrument ...38

3.9 Migrate from L2 to L3 platform.. 39
3.9.1 Introduction ...39

3.9.2 Identifying the L3 platform..39

3.9.3 Deprecated commands ...39

3.9.4 Removed commands ...41

3.9.5 Improved commands and new parameters ...41

3.9.6 Removed parameters ..45

3.9.7 Syntactical changes ...45

3.10 Tips for system integrators.. 47
3.10.1 Default deployment start and end time..47

3.10.2 Sampling rates ...47

3.10.3 Future proofing development ...47

3.10.4 Power management and power cycling behavior..48

3.10.5 Memory format...48

3.10.6 Error handling ..49

3.10.7 Electronic Static Discharge..49

4 Commands ...50
4.1 Time and Schedule .. 51
4.1.1 clock..52

4.1.2 sampling ...54

4.1.3 deployment ..58

4.1.4 pauseresume..59

4.1.5 pause ..61

4.1.6 resume ..63

4.2 Gated Sampling.. 66
4.2.1 thresholding ...67

4.2.2 twistactivation ...70

RBR#0005199revL - 4

4.3 Vehicle support .. 72
4.3.1 regimes ...73

4.3.2 regime...75

4.3.3 ddsampling...79

4.4 Real time data .. 82
4.4.1 outputformat..83

4.4.2 streamusb...87

4.4.3 streamserial..88

4.5 Deployments .. 90
4.5.1 verify ...91

4.5.2 enable ...94

4.5.3 disable ..97

4.5.4 simulation...98

4.6 Memory and Data Retrieval ... 100
4.6.1 meminfo ...101

4.6.2 memclear..104

4.6.3 memformat ..105

4.6.4 readdata ...107

4.6.5 postprocessing...108

4.6.6 postprocessing_regimes ...112

4.6.7 postprocessing_regime ...113

4.7 Configuration Information and Calibration.. 116
4.7.1 channels ...117

4.7.2 channel ...119

4.7.3 settings ...124

4.7.4 calibration ..127

4.7.5 sensor ...130

4.7.6 valve..132

4.7.7 valvesegments ...136

4.7.8 valvesegment ...138

4.7.9 uvled ...141

4.8 Communications.. 146
4.8.1 link ..147

4.8.2 serial ...148

4.8.3 sleep..150

RBR#0005199revL - 5

4.8.4 wifi ..152

4.9 Other Information .. 154
4.9.1 id ...155

4.9.2 help ...157

4.9.3 hwrev ..158

4.9.4 power..159

4.9.5 powerinternal...161

4.9.6 powerexternal ..163

4.9.7 info ..165

4.9.8 getall ...166

4.10 Data sample.. 168
4.10.1 fetch ..169

4.11 Security and Interaction .. 171
4.11.1 permit ...172

4.11.2 prompt..174

4.11.3 confirmation...175

4.11.4 reboot ...177

5 Format of Stored Data ...179
5.1 Overview... 180
5.1.1 Standard format...180

5.1.2 EasyParse format ...180

5.2 EasyParse "calbin00" format... 182
5.2.1 EasyParse format ...182

5.2.2 EasyParse ...184

5.3 Standard "rawbin00" format... 186
5.3.1 Deployment Header...186

5.3.2 Standard format...198

5.3.3 Standard format...199

5.4 Profile detection events generation.. 204

6 Supported Channel Types ...205

7 Calibration Equations and Cross-channel Dependencies211
7.1 Core Equations... 212
7.1.1 lin, or Linear..212

7.1.2 qad, or Quadratic ...212

RBR#0005199revL - 6

7.1.3 cub, or Cubic...212

7.1.4 tmp, or Temperature ...212

7.2 Specialized Equations.. 213
7.2.1 corr_rinkotemp - Temperature measured by a Rinko DO sensor ...213

7.2.2 corr_metstemp - Temperature measured by a METS (methane sensor)..214

7.2.3 optic2 - optical parameters measured by a Satlantic OCR sensor ..215

7.3 Dependent Equations .. 216
7.3.1 Example 1: corr_pH - Simple temperature correction of pH ...217

7.3.2 Example 2: corr_pH - pH correction without Temperature ...218

7.3.3 Example 3: corr_pres2 - Temperature correction of Pressure...219

7.3.4 Example 4: corr_cond - Conductivity corrections ..220

7.3.5 Example 5: corr_rinko - Correction of Rinko Dissolved Oxygen using Rinko Temperature sensor221

7.3.6 Example 6: corr_rinkoT - Correction of Rinko Dissolved Oxygen using logger Temperature sensor223

7.3.7 Example 7: pss78 - derivation of Practical Salinity (1978) ...225

7.3.8 Example 8: seapres - derivation of sea pressure from pressure ..226

7.3.9 Example 9: depth - derivation of depth from pressure ..227

7.3.10 Example 10: corr_metsmeth - Temperature correction of METS methane output ..227

7.3.11 Example 11: corr_rinkoB - Correction of Rinko Dissolved Oxygen using Rinko Temperature sensor229

7.3.12 Example 12: corr_rinkoTB - Correction of Rinko Dissolved Oxygen using logger Temperature sensor..................231

7.3.13 Example 13: deri_sos, speed of sound ..233

7.3.14 Example 14: deri_speccond, specific conductivity ..234

7.3.15 Example 15: deri_bprpres and deri_bprtemp, BPR channels..234

7.3.16 Example 16: distancefromechotiming Distance from echo timing ...236

7.3.17 Example 17: corr_o2conc_garcia, O2 concentration compensated for salinity and pressure237

7.3.18 Example 18: deri_o2sat_garcia, Derived O2 saturation from concentration ...238

7.3.19 Example 19: corr_cond1 - Conductivity corrections for deep CT cell ...240

7.3.20 Example 20: corr_cond2 - Conductivity corrections for CT cell...241

7.3.21 Example 21: corr_cond3 - Conductivity corrections for RBRLegato and 6000dbar C and CT cell242

7.3.22 Example 22: corr_pres5 - Temperature correction of Pressure...244

7.3.23 Example 23: corr_irr - Irradiance...245

7.3.24 Example 24: corr_irr2 - generic irradiance and PAR ...246

7.3.25 Example 25: deri_dyncorrT and deri_dyncorrS dynamic correction channels ..247

7.4 Supporting Material ... 252
7.4.1 Practical Salinity of Seawater..252

8 Error messages...254

RBR#0005199revL - 7

8.1 List of error and warning messages .. 255

RBR#0005199revL - 8

2 Introduction
This document applies only to RBR hardware that responds to the id command with a fwtype parameter value of 104.

RBR#0005199revL - 9

•

•

•

•
•

•

•

•

•
•

•
•
•
•

•

•

•

•

•

•

•

2.1 Document version history

Auth. Date Rev. Notes

JmL/XY/GmJ 2022/12/04 L Updated Integrating with a profiling float for derived
channels with dynamic correction.
Added description of valvesegments and valvesegment
commands.
Added description of scheduletype parameter to valve
command, supporting segmented schedules.
Improved description of twistactivation state.
Added turb12, turb13, turb14, fluo43, fluo44, fluo47,
temp38, sal_01 and temp40 to Supported Channel Types.
Added external battery type fermata_nimh to description of
powerexternal command.
Updated description of device control flags in the deployment
header, advanced header version to 2.003.
Updated description of event markers in Standard format
data.
Formatting correction in sampling command description.
Updated postprocessing command.

JmL/XY/GmJ 2021/10/21 K Added description of the corr_irr2 equation.
Updated description of the valve command.
Updated postprocessing command.
Added commands postprocessing_regimes
and postprocessing_regime.
Updated Integrating with a profiling float for use
with postprocessing and dynamic correction.
Documented ddsampling constraints and associated error
message, version 1.135 or higher.
Added cond14, pres29, temp31, temp35, temp36, tran03 to
Supported Channel Types.
Added doxy28, doxy32, doxy33, opt_15, opt24, temp37 to
Supported Channel Types.tory only: added descriptions
oftory only: added descriptions of
Added irr_05, irr_06, par_05, par_06 to Supported Channel
Types.
Updated Error messages section, mostly improved
formatting.
Updated description of "Device section content" in
Deployment Header section.

RBR#0005199revL - 10

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•
•
•

•
•

•

•
•
•

Auth. Date Rev. Notes

JmL/GmJ/PF 2020/11/23 J Added cond18, cond19, cond21, cond22, irr_02 to Supported
Channel Types.
Changed equation for cond08 in Supported Channel Types.
Added missing description of pressure correction to the
equations of Example 12.
Added example of fetch command output with error codes.
Note about parsing error codes in Parsing logger responses
Section.

GmJ/CJ/JmL 2020/07/30 H Corrected scaling constant in equation deri_o2sat_garcia,
Example 18.
Documented event for switching power source to USB
in Standard format events markers Section.
Improved description of valve command, adding note about
requirement for external power.
Added description of padding in Part 6 of the Deployment
header Section.
Added E0114 as a possible error response from commands
verify and enable.
Added irr_01, temp30, temp32, temp33, temp34, cond16 and
cond17 to Supported Channel Types.
Corrected example for disable.
Example 19: corr_cond1 - Conductivity corrections for deep
CT cell, Example 4: corr_cond - Conductivity corrections,
Example 20: corr_cond2 - Conductivity corrections for CT
cell and Example 21: corr_cond3 - Conductivity corrections
for RBRLegato and 6000dbar C and CT cell to show that the
internal temperature of conductivity cell is used for
compensation.
Added Example 23: corr_irr - Irradiance

GmJ/JmL/CJ 2020/03/24 G Additions and corrections to the Deployment header Section,
primarily adding part 6 for devices.
Added pause, resume, and pauseresume commands.
Added confirmation option to sleep command.
Added firmware versions supporting caltext07 format in
outputformat command.
Updated getall example.
Updated regime command description for integrity checks.

JmL/GmJ/
BK

2020/02/11 F Updated description of outputformat type caltext07
checksum for 4 digits.
Added channel type turb11 in Supported Channel Types.
Added valve command description
Section "Operating an AzeroA instrument" updated to reflect
usage of the valve command.

RBR#0005199revL - 11

•

•
•
•
•

•

•
•

•
•

•

•

•

•

•
•
•

•
•

•
•

•

•

Auth. Date Rev. Notes

JmL/GmJ/
SC/BK

2019/10/02 E Corrected an error in the description of the postprocessing
depth_max parameter.
Added channel type pres28 in Supported Channel Types.
Added outputformattype caltext07.
Added seed value for readdata CRC
Updated Example 7: pss78 - derivation of Practical Salinity
(1978) for behavior when computation returns an error.
Updated sensor drift monitoring at surface section
in Integrating with a profiling float
Added note about ESD in Tips for system integrators
Added Example 22: corr_pres5 - Temperature correction of
Pressure

JmL/GmJ/SC 2019/04/29 D Added postprocessing command.
Updated Integrating with a profiling float for use with the
postprocessing command.
Error messages revised for postprocessing command specific
errors.
Updated Sample data EasyParse format and Sample data
standard format with new errors.
Updated meminfo command.

JmL/GmJ 2019/02/26 C Added cond12, fluo41, hdng00, roll00, ptch00, fluo42, turb10,
cond13, temp26, temp27 in Supported Channel Types.
Added example for corr_cond2 equation.
Minor formatting (indentation) improvements.
Corrected regimes command behaviour description when
increasing or decreasing regimes count.
Added description of fwlock parameter to info command.
Corrected "atmospheric pressure" to "sea pressure" in Garcia
equation, Example 17.
Added example for corr_cond3 equation.
Updated High resolution BPR and frequency counters for
cabled ocean observatories for A0A operations.
Updated EasyParse format events markers and Standard
format events markers for devices and power tracking events.
Changed O2 saturation equation, Example 18.

RBR#0005199revL - 12

•
•

•

•

•
•
•

•
•

•

•
•
•

•

•

•
•
•
•

Auth. Date Rev. Notes

JmL/GmJ 2018/04/13 B Updated quickstart Integrating with a profiling float
Corrected sampling rate conversion example in Tips for
system integrators
Added Default deployment start and end time in Tips for
system integrators
Revised timing to leave unit powered off to reach full reset in
Tips for system integrators
Added error handling in Tips for system integrators
Reworked Serial streaming from serial port
Salinity calculation description updated for aberrant values
Example 7: pss78 - derivation of Practical Salinity (1978)
Updated channel command example
Added description of reg parameter to power command for f/
w version 1.080
Documented cellcount parameter in section 2 of the
deployment header for f/w version 1.080
Advanced deployment header version to 2.001.
Correction warnings start with a 'W' not a 'E' (channel, verify)
Corrected Error messages page, removed warnings (described
now in enable and verify)
Removed error E0409 from channel, verify, and Error
messages
Reworked channel, verify, and sensor commands description
to correctly describe use of allindices, alllabels and all
keywords
Corrected example in memformat (wrong usage of permit)
regimes example reinstated
Reworked examples in outputformat with correct labels
Added cond11 in Supported Channel Types.

GmJ/JmL/SC 2018/01/04 A Initial L3 command reference release

https://docs.rbr-global.com/display/L3DOC/.Convert+Hz+to+milliseconds+vB

RBR#0005199revL - 13

1.
2.

3.

4.
5.
6.
7.

2.2 Formatting
Examples of literal input to and output from the logger are shown in bold type.
In examples of dialogue between the logger and a host, input to the logger is preceded by >>, while
output from the logger is preceded by <<. These characters must not actually be included in
commands or expected in responses.
Some examples of command dialogues contain descriptive comments which are not part of the
command or response. These start with a percent character, %.
When an item or group of items is optional, it is enclosed in [square brackets].
Where an item can be only one of several options, options are separated by vertical | bars.
Place holders for variable fields are in <italics enclosed in angle brackets>
Lists are used for unknown or variable numbers of items, or to abbreviate large numbers of options,
and are specified by giving a first example of an item, followed by a comma and ellipsis, such as
<example-value>, …

RBR#0005199revL - 14

1.
2.

3.

2.3 Security

There are several levels of access control to logger commands, although "levels" is perhaps not the best word, as more
than one can apply:

Open commands can be executed without restriction.
Unsafe commands are those which the logger will not execute if logging is in progress. For example,
the sampling period cannot be changed in the middle of a deployment. Reading parameters is always
available.
Protected commands are those which might be considered 'dangerous'; for example, clearing the
memory. These have a safety guard on them; see the permit command.

RBR#0005199revL - 15

1.

2.4 Command Processing and Timeouts

Commands may be sent to the logger via either the USB-CDC port or a true serial port (RS-232 or RS-485). With a few
exceptions and minor differences, both ports are intended to offer the same functionality, but can not be used for
command input simultaneously. If this is attempted, then either one of the ports will not respond, or there will be a
'busy' message:

E0101 command parser busy

2.4.1 Command Entry

Start and End of a command
A potential command is considered to begin when its first character is received. For the serial port this is
straightforward; for the USB it is hard or impossible for the CPU to 'see' how the messages are packaged, but the overall
effect is similar. In both cases the potential command has been received once the logger sees a termination character;
either one of <CR> (0x0D) or <LF> (0x0A). Combinations of the two characters are dealt with as follows:

>> <CR><LF>
<< Ready:

>> <LF><CR>
<< Ready:

>> <CR><CR>
<< Ready: Ready:

>> <LF><LF>
<< Ready: Ready:

In the first two cases, the second character is considered redundant and is discarded; only one Ready: prompt is sent.
 For the last two cases, the second character is treated as a second empty command, so it also provokes the logger's
prompt, and a total of two prompts are sent (see also the prompt command).

Upper case and lower case
In general, the logger is not sensitive to the case of the input; for example, ID, Id, iD, and id are all acceptable forms for
the id command. Any exceptions to this rule are highlighted when necessary. However, when handling logger
responses, do not assume that the case of the output will match the case of the input: see also Parsing logger
responses.

Common error messages
The received message may or may not form a valid command; errors detectable by the logger will vary from one
command to another, but some of the common, general errors include:

E0102 invalid command '<unknown_text>'

RBR#0005199revL - 16

2.
3.

E0107 expected argument missing
E0108 invalid argument to command: '<unknown_text>'

See Error messages for a complete list.

2.4.2 Timeouts, Output Blanking and Power Saving

Wakeup
All RBR instruments sleep as much as possible. Interaction requires that the instrument be woken up first, then a series
of commands issued. After a 10-second idle timer elapses, the instrument will return to the low-power sleep mode.

The wakeup procedure is to send a single character; carriage return <CR> (0x0D) is the recommended choice. Over the
USB link, the response is usually immediate. Over the Serial link, this first character may not be completely received by
the instrument due to the non-zero wakeup time required, and it may be seen as a garbage character. However, the
instrument itself ignores all garbage characters received immediately after wakeup, and so will not return any errors.

After the initial <CR> character, a 10ms pause should be used. Following this, the instrument is fully ready to receive
any valid command.

In the RBR Ruskin software which is used by end-customers, the following is an example of the wakeup sequence used:

>> <CR>
% Nothing will be returned by this character, but the logger will start to wake up.
% [10ms pause]
% The logger completes its wake-up procedure.
>> id<CR>
% The id command is a useful initial command as it replies with confirmation of the instrument connection.
<< id model = RBRduo3, version = 1.000, serial = 050050, fwtype = 104
% This is the reply from the instrument.
<< Ready:
% This is the "Ready" prompt, which may or may not be included, depending on the state of the prompt command.

Output blanking
When the first character of a potential command is received, a 10-second timeout is started. This timeout serves two
purposes: output blanking and power saving.

As soon as the logger knows it may be about to receive a command, any output which it could autonomously generate
(such as streamed sample data) is suppressed. This is to avoid confusing the host, which has just sent a command and
may be expecting a particular form of response. Until the logger has processed the command and sent the response,
any other outputs will be suppressed. Output such as streamed data may appear in between received commands, but
not while a command is being received or processed.

This 'output-blanking' state does not persist forever; if the 10-second timeout expires before a command terminator is
seen, outputs such as streamed data are permitted again. This poses no problem for machine generated commands,
but can be limiting for commands typed manually at a terminal.

The output blanking behaviour does not apply to the very first (potential) command received after the logger is woken
from a quiescent state. For this command, outputs such as streamed data may continue to appear while the command
is being received. This exception prevents, for example, random noise input from suppressing required data output. The

RBR#0005199revL - 17

•

•

•

logger will not invoke the output blanking behaviour until it has seen at least one valid command, at which point it can
reasonably assume that a valid host is genuinely trying to communicate with it. Empty commands (isolated <CR> and/
or <LF>) do not count as "valid commands" for this purpose.

Power saving
The second purpose of the 10-second timeout is to minimize power consumption. If no valid, terminated command is
received within the timeout, the communication returns to a quiescent state. This means that it discards any
incomplete input, restarts the "valid command" timeout, and will start afresh with the next input character.

In the case of the serial port, it also allows the transmit hardware to be turned off to save power; indeed, if the logger
has no other tasks to perform the entire instrument will enter a low power sleep mode.

The USB port is different in this respect, because the logger can draw enough power from the connection to run most of
its basic functions. As long as the USB is connected the logger remains 'awake' and responsive to commands; no
hardware is shut down. However, expiry of the 10-second timeout still resets the command processor's behaviour with
respect to its 'memory' of valid commands, incomplete input and output blanking.

Changing the Timeout
The timeout referred to in the above sections has a default value of 10 seconds in all instruments. As noted, this is short
enough to make manual typing of commands difficult in some cases. This timeout can be changed; refer to the
description of the inputtimeout parameter for the settings command for more details.

2.4.3 Parsing logger responses
To implement robust automated parsing of responses to logger commands, there are some important points to
consider.

Do not assume the upper-case/lower-case nature of the responses will match those in the command.
 For example,

>> MEMINFO USED
<< MEMINFO used = 0

It is good practice to make parsing insensitive to the case of the responses.

Do not assume that parameters will be reported in the same order they were requested. For example,

>> meminfo size used remaining
<< meminfo used = 0, remaining = 132120576, size = 132120576

It is good practice to check each <key> = <value> pair for the <key> of interest until all searches are
satisfied.

Be aware that future versions of the instrument firmware may report parameters that are not
documented here, and that the reporting order may change. For example,

RBR#0005199revL - 18

•

•

•

>> meminfo
<< meminfo used = 0, remaining = 132120576, size = 132120576

is the current behaviour, but a future version might respond as follows:

>> meminfo
<< meminfo used = 0, remaining = 132120576, futureparameter = 132120576, size = 132120576

Again, it is good practice to check all <key> = <value> pairs, and be prepared to ignore <key>s which
are not recognized.

Do not assume that numeric fields will always have the same number of digits. Even parameters
whose values might be expected to remain fixed can change if the logger is used in a different
configuration. For example, an instrument with an auto-ranging channel might behave as follows:

>> channel 4 gain
<< channel 4 gain = auto

>> channels readtime
<< channels readtime = 1890

>> channel 4 gain = 20

<< channel 4 gain = 20.0

>> channels readtime

<< channels readtime = 350

This is true even when parsing data values with a well specified format. For example, even though
reporting of values may be specified to contain four decimal places (eg. 21.7325), parsing this number
without assuming anything about how many digits there are is more robust.
When parsing streamed output or fetched values, it is good practice to assume some channels might
report error code (see outputformat and fetch). If a channel report an error code, others channels
might still be valid.
When parsing numbers of any sort, use the most inclusive format which is practical. In principle,
parsing everything as a double precision floating point number would almost always work (one
exception being the 64-bit integers used for timestamps in EasyParse format: see the paragraph
"Sample timing" in Section "Sample data EasyParse format"). Recognizing that such an approach is
overkill and may add unacceptable overhead in some applications, parsing all integers as signed 32-
bit quantities and all floating point values as single precision (IEEE-754 32-bit) numbers would be
satisfactory. It may be assumed that numbers are integers unless the documentation or examples
make it clear that they are floating point values.
Note that some commands accept and respond with date/times which look like very large integers,
but which have an implicit special format. For example, 20170401120000 represents noon on 1st April
2017. These cases are usually clear from the context.

RBR#0005199revL - 19

1.
2.
3.

2.4.4 Parameter Modification

All updated parameters are held temporarily in a RAM buffer, and read back from there if interrogated. The data is
permanently stored under the following conditions:

timeout protection, 10 seconds after the last parameter modification.
successfully enabling the logger to sample.
executing the sleep command.

If none of these conditions are met (removal of power before timeout, for instance), parameter values may not be those
expected. This could apply if, for example, a logger is programmed via USB, without internal batteries installed and
relying on the USB for power. If the USB link is unplugged before the logger has a chance to save any changes made,
they will be lost.

RBR#0005199revL - 20

3 Quick start

This section details commands sent to (>>) and responses received from (<<) the logger in order to perform a desired
action. These do not cover an exhaustive list of possibilities but are intended to be a starting point from which to start
interacting with the logger.

The prompt state has been disabled (prompt state = off) for all of these examples. If it was enabled you should expect
a Ready: prompt following all of the logger's responses.

RBR#0005199revL - 21

3.1 General overview

3.1.1 Channels
The RBR L3 platform based instruments, allow to measure a wide range of physical properties of the water.
Temperature, pressure, conductivity, turbidity, dissolved oxygen, chlorophyll: this list is not exhaustive and the number
of sensors supported is increasing regularly.
The RBR instruments have different channels available, one for each physical property measured (for example
temperature) but also for physical properties derived from the measured ones (for example salinity).
Channels can be referred when sending commands via their indices (the first channel is at index 1) or via their label (for
example temperature_00).

3.1.2 Acquiring samples
There are basically two fundamentals ways to acquire samples. They can be acquired by fetching (polling) or according
to a defined schedule.
Fetching measurement is performed via the command fetch.
Scheduled samples are configured with different commands (see deployment and sampling). They are always logged
on board. They can be streamed directly out of the logger (see streamusb and streamserial). The underlying schedule
can be as simple as a fixed sampling rate (see continuous mode in sampling) or more complex schemes (for example
ddsampling or regimes). They can also obey some external control (thresholding, twistactivation).

One main feature of the RBR instruments is that fetching and scheduled samples can occur at the same time, they are
not exclusive.

The following quickstarts give examples of different sequence of commands on how to use the different ways to acquire
samples.

RBR#0005199revL - 22

3.2 Enabling continuous sampling
Start sampling for 24 hours at 1 sample per second starting from the current time of December 1, 2017 12:00 am.

>> clock datetime = 20171201000000
<< clock datetime = 20171201000000
>> deployment starttime = 20171201000000, endtime = 20171202000000
<< deployment starttime = 20171201000000, endtime = 20171202000000
>> sampling mode = continuous, period = 1000
<< sampling mode = continuous, period = 1000
>> verify
<< E0402 memory not empty, erase first
>> enable erasememory = true
<< enable status = logging, warning = none
>> deployment status
<< deployment status = logging

RBR#0005199revL - 23

3.3 Enabling wave sampling
Collect 1024 samples at a rate of 4Hz every 30 minutes starting from December 2, 2017 12:00 am. The start time is set for
24 hours in the future of the current logger time. The end time is set for December 3, 2017 12:00am.

>> clock datetime = 20171201000000
<< clock datetime = 20171201000000
>> deployment starttime = 20171202000000, endtime = 20171203000000
<< deployment starttime = 20171202000000, endtime = 20171203000000
>> sampling mode = wave, period = 250, burstlength = 1024, burstinterval = 1800000
<< sampling mode = wave, period = 250, burstlength = 1024, burstinterval = 1800000
>> permit command = settings
<< permit command = settings
>> settings altitude = 0.26
<< settings altitude = 0.2600
>> verify
<< E0402 memory not empty, erase first
>> enable erasememory = true
<< enable status = pending, warning = none
>> deployment status
<< deployment status = pending

RBR#0005199revL - 24

3.4 Serial streaming from serial port

3.4.1 Setting the correct baud rate
Here we set the baud rate to 115200 via the serial command.

>> serial
<< serial baudrate = 19200
>> serial baudrate = 115200
<< serial baudrate = 115200
% This response is sent at the old baudrate, 19200Bd.
% The host must now change its baudrate to 115200Bd.

3.4.2 Enabling the serial streaming
An instrument will start streaming measurements as soon as it is logging (see enable command) and serial streaming is
enabled (see streamserial command). If the instrument memory is full, the instrument will continue streaming as long
as the instrument should be logging (see deployment command). The outputformat command indicates which
channels will be reported and sets the type of output format to be used.

Here is an example for an RBRduo³ T.D.:

% Set output format type to caltext01 (4 digits after decimal point without units)
>> outputformat type = caltext01
<< outputformat type = caltext01
% What channels will be reported?
>> outputformat labelslist
<< outputformat labelslist = temperature_00|pressure_00
% Enabling logging
>> enable erasememory=true
<< enable status = logging, warning = none
% Instrument does not stream but is logging
% Enabling serial streaming
>> streamserial state = on
<< streamserial state = on
% Instrument starts sending measurements
<< 2000-01-01 00:10:14.000, 10.0110, 501.3213
<< 2000-01-01 00:10:14.500, 10.0241, 501.0201
<< 2000-01-01 00:10:15.000, 10.0248, 500.8246
...
% Disabling logging
>> disable
<< disable
% Instrument does not stream nor log anymore

RBR#0005199revL - 25

Here is another example with a RBRconcerto³ C.T.D

% What channels will be reported?
>> outputformat labelslist
<< outputformat labelslist = temperature_00|pressure_00|salinity_00
% Set output format type to caltext02 (4 digits after decimal point with units)
>> outputformat type = caltext02
<< outputformat type = caltext02
% Enabling serial streaming
>> streamserial state = on
>< streamserial state = on
% At this moment, instrument does not log nor stream
% Enabling logging
>> enable erasememory=true
<< enable status = logging, warning = none
% Instrument starts sending measurements
<< 2000-01-01 00:10:14.000, 10.0110 C, 501.3213 dBar, 35.2012 PSU
<< 2000-01-01 00:10:14.500, 10.0241 C, 501.0201 dBar, 35.2013 PSU
<< 2000-01-01 00:10:15.000, 10.0248 C, 500.8246 dBar, 35.2001 PSU
...
% Disabling logging
>> disable
<< disable
% Instrument does not stream nor log anymore

RBR#0005199revL - 26

3.5 Download stored data
In order to download data we must know how much data is stored by using the meminfo used command. Then we can
download either the entire amount in one transfer or in multiple chunks of data. Below is an example where we
download in multiple smaller chunks. Each chunk of downloaded data is followed by a two byte CRC error check which
must not be included when parsing the data. For parsing the downloaded data see the Format of Stored Data section.

>> meminfo used
<< meminfo used = 2608
>> readdata dataset = 1, size = 500, offset = 0
<< readdata dataset = 1, size = 500, offset = 0<cr><lf><bytes[0…499]-of-data><crc>
>> readdata dataset = 1, size = 500, offset = 500
<< readdata dataset = 1, size = 500, offset = 500<cr><lf><bytes[500…999]-of-data><crc>
>> readdata dataset = 1, size = 500, offset = 1000
<< readdata dataset = 1, size = 500, offset = 1000<cr><lf><bytes[1000…1499]-of-data><crc>
>> readdata dataset = 1, size = 500, offset = 1500
<< readdata dataset = 1, size = 500, offset = 1500<cr><lf><bytes[1500…1999]-of-data><crc>
>> readdata dataset = 1, size = 500, offset = 2000
<< readdata dataset = 1, size = 500, offset = 2000<cr><lf><bytes[2000…2499]-of-data><crc>
>> readdata dataset = 1, size = 500, offset = 2500
<< readdata dataset = 1, size = 108, offset = 2500<cr><lf><bytes[2500…2607]-of-data><crc>

RBR#0005199revL - 27

3.6 Downloading an EasyParse dataset
EasyParse format (calbin00) datasets are intended to make the process of parsing and subsequent viewing or analysis
of data extremely simple. In the Standard memory format (rawbin00), calibration coefficients, deployment settings,
raw ADC data, and logger events are all combined in a single binary block, which requires substantial amounts of code
to untangle. The EasyParse format contains two separate blocks, one of which is for data alone, and the other
containing logger events. Many applications only require the data block, further simplifying the process.

There are costs associated with the EasyParse format: memory consumption, and loss of certain post-processing
capabilities (mainly post-deployment calibration). These costs are often not significant obstacles.

3.6.1 Starting a deployment using EasyParse
Before the logger is enabled, it must be instructed to use the EasyParse format using the memformat command, by
specifying the newtype parameter. This step does not need to be repeated before every deployment unless the format
is to be changed. The format can not be changed while logging is in progress.

>> memformat newtype = calbin00

 This can be verified after the logger has been enabled, again using the memformat command:

>> memformat
<< memformat type = calbin00

 The readings made by the logger are stored in dataset-1, as a series of records containing a timestamp, and readings
for each channel. The readings are IEEE single precision floats, representing engineering unit data (degC, mS/cm, dbar,
etc). Often, this is the only dataset required for a download. However, all logger events are stored in dataset-0, and
these may be of interest in certain cases. In particular, the cast detection events and WiFi module enable events can be
useful markers that permit a smart host to download just a small section of the data (perhaps 'the latest profile' or 'all
data since the last time the WiFi module was enabled').

3.6.2 Downloading the dataset
Downloading the data block in dataset-1 uses the readdata command. First find out how much data is in use:

>> meminfo dataset 1 used
<< meminfo dataset = 1, used = 2000

Read that data in a single 2000 byte chunk:

>> readdata dataset = 1, size = 2000, offset = 0
<< readdata dataset = 1, size = 2000, offset = 0<cr><lf><bytes[0…1999]-of-data><crc>

In addition to the data block, there is another essential piece of information - the currently active channel list. The
length of this list, and the ordering of the channels in it, will be an essential part of parsing the data block (remember
the timestamp-value1-value2-value3...-valueN record structure).

RBR#0005199revL - 28

Request the active channel list:

>> outputformat channelslist
<< outputformat channelslist = temperature(C)|pressure(dbar)

There are just two channel readings in the data, so each sample is composed of a timestamp (an unsigned, 8-byte/64-
bit integer number expressing milliseconds since the Unix epoch: 1970-01-01T00:00:00Z) followed by one reading for
each of temperature and pressure (4-byte IEEE 754 floating-point numbers).

Converting the data at this point should be straightforward.

RBR#0005199revL - 29

3.7 Integrating with a profiling float

3.7.1 Introduction
There are a number of dedicated features in the RBR L3 products aimed at profiling floats. The primary requirement of
these vehicles is to have multiple sampling regimes that are enabled according to depth.

The typical Argo profiler might be set up with the following behaviour:

3.7.2 Buoyancy control
For the majority of this 10-day schedule, the RBR instrument is used purely as a depth sensor, providing input to the
buoyancy engine and float controller. This is typically done interactively using the fetch command, which can be
performed at any time, regardless of whether the RBR instrument logging schedule is enabled or not. The RBR will
automatically fall asleep after an idle timeout of a few seconds, but in order to minimize the power consumption, it is
recommended that the command fetch sleepafter = true, channels = pressure_00 is used. This will override the idle

RBR#0005199revL - 30

•
•
•

timeouts and does not affect any ongoing deployment. It will also ensure, that the instrument is minimizing the power
requirements by just powering and sampling the pressure sensor.

Always ensure the instrument is awake before sending the fetch by following the recommended wake-up procedure.

3.7.3 Setup for ascent, enable logging
The real science of the Argo profiler occurs during the upcast, typically from 2000dbar to the surface. For historical and
scientific reasons, this is often a multi-stage ascent, where the sampling and binning requirements change according to
depth. The expanded figure below shows an example of a typical ascent setup.

As is clear, there are three distinct sampling regimes that are required. Each of them has a boundary, a sampling speed,
and an averaging bin size.

The boundary determines when the regime comes into effect (dbar).
The sampling speed dictates the measurement rate that is used internally (msec).
The bin size dictates the amount of water column (in dbar) over which the samples will be averaged
and stored.

To accomplish this task, a combination of the regimes and three regime commands are needed.

First, one should tell the logger that it will be ascending (decreasing water pressure) using three sampling regimes, and
the absolute pressure serves as reference.

>> regimes direction = ascending, count = 3, reference = absolute
<< regimes direction = ascending, count = 3, reference = absolute

Configure the regime closest to the seabed (10s sampling rate, 50m bin, bottom boundary 500 dbar):

>> regime 1 boundary = 500, binsize = 50, samplingperiod = 10000
<< regime 1 boundary = 500, binsize = 50, samplingperiod = 10000

Then the middle one (1s sampling rate, 20m bin, bottom boundary 200 dbar):

RBR#0005199revL - 31

>> regime 2 boundary = 200, binsize = 20, samplingperiod = 1000
<< regime 2 boundary = 200, binsize = 20, samplingperiod = 1000

Then the regime closest to the sea surface (1s sampling rate, no binning, bottom boundary 50 dbar):

>> regime 3 boundary = 50, binsize = 0, samplingperiod = 1000
<< regime 3 boundary = 50, binsize = 0, samplingperiod = 1000

Finally put the logger in regimes mode:

>> sampling mode = regimes
<< sampling mode = regimes

With this setup, the logger will only start recording data once the boundary of the first regime is crossed. In this
example, if the RBR instrument is enabled while the float is at 700 dbar, then starts to ascend, no data will be stored
until 500 dbar. If the float is at 490 dbar when the RBR instrument is enabled, sampling will start immediately as the first
regime is already in effect.

Instruments can be shipped with a derived data channel populated, type cnt_00 , which contains a count of the number
of measurements in the averaged bin when in the regimes sampling mode. As with any other channel, it may be turned
on or off as needed; see the channel command. The benefit of turning it on when storing data in EasyParse format is
that the value is then available when the main sample data in dataset-1 is downloaded. Otherwise, the dataset
containing the events must also be retrieved if these values are needed.

Ensure the logger will use the EasyParse format (calbin00).

>> memformat newtype = calbin00
<< memformat newtype = calbin00

Starts the logger while ensuring the memory is cleared first.

•

•

The cnt_00 channel is most useful in regimes mode; if it is turned on for other sampling modes, it will report
as follows:

in average or tide modes, a count of the number of measurements contributing to the
average; this will usually be the same as the burstlength .
in continuous, burst or wave modes, the value 1, as each sample stored has only one
measurement associated with it.

See the sampling command for further information about sampling modes.



Unlike other CTDs, RBR instruments can sample through surface waters without concerns. In fact, making
measurements in air can provide a reference drift measurement for conductivity, and a potentially useful
barometric pressure reading as well.



When switching between regimes with different sampling rates, the logger may not sample for up to 2
seconds.



http://docs.rbr-global.com/display/L25DOCpublic/.channel+v2

RBR#0005199revL - 32

>> enable erasememory = true
<< enable status = logging, warning = none

There will also be a bin in progress which never completes, once the float has risen to the surface. However, issuing the
stop command will flush the final bin to memory, regardless of whether it is complete or not.

3.7.4 End of ascent, disable logging and download data
Downloading the data from the instrument can be done while a schedule is still enabled, but this requires careful
housekeeping to keep track of what data has been added to the dataset since the last retrieval. In this example, the
logger is stopped before the download commences.

Stop the current deployment

>> disable
<< disable status = stopped

Determine how much memory has been used:

>> meminfo used
<< meminfo used = <bytes-used-in-dataset-1>

Now loop over the data to download it in chunks:

>> readdata dataset = 1, size = <chunk-size>, offset = 0
<< readdata dataset = 1, size = <chunk-size>, offset = 0<cr><lf> <bytes[offset…size]-of-data><crc>
>> readdata dataset = 1, size = <chunk-size>
<< readdata dataset = 1, size = <chunk-size>, offset = <1 × chunk-size><cr><lf> <bytes[offset…size]-of-data><crc>
>> readdata dataset = 1, size = <chunk-size>
<< readdata dataset = 1, size = <chunk-size>, offset = <2 × chunk-size><cr><lf> <bytes[offset…size]-of-data><crc>
...
...
>> readdata dataset = 1, size = <chunk-size>
<< readdata dataset = 1, size = <final-chunk-size>, offset = <(n - 1) × chunk-size><cr><lf> <bytes[offset…size]-of-
data><crc>

The data returned by the read command has a CRC value at the end. This can be used to verify the integrity of the
download, but should not be stored. All chunks should be concatenated together.

Parsing the resultant data block can be done according to the description in the "EasyParse format" section Briefly,
each record consists of an unsigned, 8-byte/64-bit integer timestamp, and a 4-byte IEEE 754 floating-point number
value for each channel.

3.7.5 More details on the calculation
Please note that samples taken in a bin where the outer limit has previously been exceeded are discarded, as shown in
the example figure.

RBR#0005199revL - 33

3.7.6 Available output channels
The list of channels populated onto an instrument and enabled by a float controller is subject to change depending on
the float model (for example, some floats rely on hydrostatic pressure, others on absolute pressure) or revision
(dynamic correction channels available only since fw 1.146).

Channel label Description

conductivity_00 Conductivity (mS/cm)
temperature_00 Marine temperature (°C)
pressure_00 Absolute pressure (dbar) (at surface will read around 10 dbar)
seapressure_00 Hydrostatic pressure (dbar) (at surface will read around 0 dbar)
salinity_00 Salinity without dynamic correction applied (PSU)
conductivitycelltemperature_00 Internal temperature of the conductivity cell (°C)
temperaturedyncorr_00 Marine temperature corrected for C-T lag (°C), available since fw

1.146, see deri_dyncorrT and deri_dyncorrS dynamic
correction channels

salinitydyncorr_00 Salinity with dynamic correction applied (PSU), available since fw
1.146, see deri_dyncorrT and deri_dyncorrS dynamic
correction channels

cnt_00 Counts, number of sample used to calculate a bin average

3.7.7 Post-processing onboard
Starting from firmware 1.135, it is possible to bin the data after the ascent and to generate more statistics (like the
standard deviation of samples) via the postprocessing command. The regimes mode is still relevant in conjunction
with post-processing to retain a different sampling rate, but with the parameter binsize set to 0 to record all samples as
the postprocessing command relies on data stored in dataset-1 to generate post-processed data.

% ---- set sampling parameters --------------------------

>> regimes direction = ascending, count = 3, reference = absolute
<< regimes direction = ascending, count = 3, reference = absolute
>> regime 1 boundary = 500, binsize = 0, samplingperiod = 10000
<< regime 1 boundary = 500, binsize = 0, samplingperiod = 10000
>> regime 2 boundary = 200, binsize = 0, samplingperiod = 1000
<< regime 2 boundary = 200, binsize = 0, samplingperiod = 1000
>> regime 3 boundary = 50, binsize = 0, samplingperiod = 1000
<< regime 3 boundary = 50, binsize = 0, samplingperiod = 1000
>> sampling mode = regimes
<< sampling mode = regimes
>> memformat newtype = calbin00
<< memformat newtype = calbin00

% ---- set postprocessing parameters --------------------------

RBR#0005199revL - 34

>> postprocessing command=reset
<< postprocessing status = disabled

>> postprocessing mode = regimes
<< postprocessing mode = regimes
>> postprocessing_regimes direction = ascending, count = 3, reference = absolute
<< postprocessing_regimes direction = ascending, count = 3, reference = absolute
>> postprocessing_regime 1 boundary = 500, binsize = 50
<< postprocessing_regime 1 boundary = 500, binsize = 50.0
>> postprocessing_regime 2 boundary = 200, binsize = 20
<< postprocessing_regime 2 boundary = 200, binsize = 20.0
>> postprocessing_regime 3 boundary = 50, binsize = 0
<< postprocessing_regime 3 boundary = 50, binsize = 0.0

>> postprocessing channels = mean(temperature_00)|mean(salinity_00)|mean(conductivitycelltemperature_00)|
mean(temperaturedyncorr_00)|mean(salinitydyncorr_00)
<< postprocessing channels = mean(temperature_00)|mean(salinity_00)|mean(conductivitycelltemperature_00)|
mean(temperaturedyncorr_00)|mean(salinitydyncorr_00)
>> postprocessing command = start
<< postprocessing status = processing
>> enable erasememory = true
<< enable status = logging, warning = none
>> postprocessing status
<< postprocessing status = disabled
>> postprocessing command = enable
<< postprocessing status = processing

At the end of the ascent, stop logging, and wait for the post-processing to finish:

>> disable
<< disable status = stopped
>> postprocessing status
<< postprocessing status = processing
...
>> postprocessing status
<< postprocessing status = finished

And download the post-processed data (dataset-4):

>> meminfo dataset = 4, used
<< meminfo dataset = 4, used = <bytes-used-in-dataset-4>
>> readdata dataset = 4, size = <chunk-size>, offset = 0
<< readdata dataset = 4, size = <chunk-size>, offset = 0<cr><lf><bytes[offset…size]-of-data><crc>
>> readdata dataset = 4, size = <chunk-size>
<< readdata dataset = 4, size = <chunk-size>, offset = <1 × chunk-size><cr><lf><bytes[offset…size]-of-data><crc>

....

RBR#0005199revL - 35

3.7.8 Providing platform details to end-users
Some end-users want to keep the history of the sensor's details (for example, pressure sensor model). RBR Ltd.
maintains a database of all instruments produced and their associated sensor. Providing the serial number (id
command) should be sufficient in practice. But some end users might want to have all possible information readily
available from the log files sent by the float to the shore.
The getall command outputs the result of all the other possible commands. If the output of that command is too large
to be handled by the host, RBR recommends including the results from the calibration, sensor, id, and info commands
in the log files.

3.7.9 Sensor drift monitoring at surface
It is possible to partly monitor the drift of different sensors when the float is at the surface and sensors are exposed to
air. Pressure measurements at the surface give a direct offset correction. Optical dissolved oxygen measurements, air
measurements, will also provide a reference for drift correction (see published literature). Measuring conductivity at the
surface not only gives the opportunity to confirm that the float is effectively at the surface but also allows to monitor
any electronic drift in the conductivity as the sensor should read around 0. Conductivity in air measurements needs to
be taken with precaution. It is advised to acquire several measurements in air and not just one as the conductivity cell
might be washed by waves. If only one conductivity value is to be transmitted to shore, always use the lowest value. It is
preferable to report directly the conductivity and not the salinity as the PSS78 calculation will saturate at 0 (see
Example 7: pss78 - derivation of Practical Salinity (1978)).

3.7.10 Energy tracking
The instrument allows to track energy consumed via the command powerexternal .

RBR#0005199revL - 36

3.8 High resolution BPR and frequency counters for cabled ocean
observatories

3.8.1 Introduction
Loggers with frequency counter channels can achieve a very high measurement resolution (10 ppb). In order to
maximize the resolution some additional considerations are required on the part of the user. This chapter presents the
main points to follow to ensure the best performance for loggers using frequencies counters (and/or BPR channels).
When sampling at a rate of 1Hz or slower, the frequency counter board will integrate the signal over around 800 ms;
with faster sampling speeds, the whole period of time between samples is used as the integration time.

3.8.2 Deploying a frequency counter/BPR logger running continuously at 1Hz and
streaming over serial

We should then first make sure the output format is in caltext04 (or caltext03) and we can enable streaming while
logging:

>> outputformat type = caltext04
<< outputformat type = caltext04
>> streamserial state = on
<< streamserial state = on

We can then setup the deployment in continuous mode at 1Hz, and define the starttime and the endtime (here between
the 2017-12-01 and the 2017-12-02):

>> sampling mode = continuous, period = 1000
<< sampling mode = continuous, period = 1000
>> deployment starttime = 20171201000000, endtime = 20171202000000
<< deployment starttime = 20171201000000, endtime = 20171202000000

We can now enable logging:

To avoid any loss of resolution, calibrated output formats caltext03 and caltext04 should be used (see the
outputformat command). The other calibrated output formats output 6 significant digits, which is insufficient
to represent the full potential sensor resolution.



High-resolution data must not be used in conjunction with the EasyParse memory format. The EasyParse
memory format stores readings as single-precision (32-bits) floating-point numbers, which limits the
achievable resolution.



RBR#0005199revL - 37

>> enable erasememory = true
<< enable status = logging, warning = none
>> deployment status
<< deployment status = logging

The instrument now continuously outputs the measurements:

<< 2017-12-01 18:37:48.000, 30.39588279090822e+006, 5.825177871156484e+006, 17.1028520e+000,
22.4525380e+00

3.8.3 BPR channels
High-resolution RBR BPR instruments are configured to provide 2 frequency counter channels and 2 BPR channels per
BPR sensor: pressure signal period, temperature signal period, calculated pressure, calculated temperature. The
instrument stores only the frequency measurements (BPR channels being derived).

The channel command gives back:

>> channel 1
<< channel 1 type = peri00, module = 96, status = on, settlingtime = 900, readtime = 858, equation = lin, userunits =
ps, label = none
>> channel 2
<< channel 2 type = peri01, module = 97, status = on, settlingtime = 900, readtime = 858, equation = lin, userunits =
ps, label = none
>> channel 3
<< channel 3 type = bpr_08, module = 243, status = on, settlingtime = 0, readtime = 0, equation = lin, userunits =
dbar, label = none
>> channel 4
<< channel 4 type = bpr_09, module = 244, status = on, settlingtime = 0, readtime = 0, equation = lin, userunits = C,
label = none

And the calibration command returns:

>> calibration 1
<< calibration 1 label = none, type = peri00, datetime = 20170401000000, c0 = 20.000000e+006, c1 =
10.000000e+006
>> calibration 2
<< calibration 2 label = none, type = peri01, datetime = 20170401000000, c0 = 5.0000000e+006, c1 =
2.5000000e+006
>> calibration 3
<< calibration 3 label = none, type = bpr_08, datetime = 20171123120721, x0 = 5.8310300e+000, x1 =
-24.514030e+003, x2 = -573.64115e+000, x3 = 76.129280e+003, x4 = 35.688000e-003, x5 = 0.0000000e+000, x6 =
30.413170e+000, x7 = 664.14899e-003, x8 = 58.803408e+000, x9 = 180.91160e+000, x10 = 0.0000000e+000, n0 = 1, n1
= 2
>> calibration 4
<< calibration 4 label = none, type = bpr_09, datetime = 20171123120722, x0 = 5.8310300e+000, x1 =
-3.8981210e+003, x2 = -10.493120e+003, x3 = 0.0000000e+000, n0 = 2

RBR#0005199revL - 38

If the Paroscientific, Inc. transducer attached to the RBR BPR logger is changed, please refer to Example 15:
deri_bprpres and deri_bprtemp, BPR channels in order to change the calibration.

3.8.4 Operating an RBRquartz³ BPR|zero instrument
RBRquartz³ BPR|zero instruments are able to compensate the drift of the pressure sensor by regularly measuring the
internal pressure of the instrument body with the same pressure sensor and comparing it to a reference barometer
placed inside the instrument.
In order to do so, the instrument operates a valve to switch the pressure sensor between being exposed to the sea
pressure (Marine) and being exposed to the instrument housing pressure (Atmospheric).
In order to set up the deployment so that the RBRquartz³ BPR|zero instrument regularly operates the valve, the
following steps are required prior to enabling the deployment (see details of command valve) .

If one wants to perform a measurement of the internal pressure every month for 5 minutes:

>> valve scheduled = true
<< valve scheduled = true
>> valve interval = 2678400000
<< valve interval = 2678400000
>> valve duration = 300000
<< valve duration = 300000

Then enable the deployment (see details above in the case of a BPR instrument):

>> enable erasememory = true
<< enable status = logging, warning = none
>> deployment status
<< deployment status = logging

If one wants to trigger a measurement of the internal pressure (Atmospheric) manually:

>> valve command = setpositionA
<< valve status = positionA

And setting the instrument back to the sea pressure (Marine) measuring position:

>> valve command = setpositionM
<< valve status = positionM

If the last step is omitted, the valve will return to the Marine position (positionM) at the end of the next scheduled
episode.

RBR#0005199revL - 39

•

•

3.9 Migrate from L2 to L3 platform

3.9.1 Introduction
For customers who have used the L2 platform, migrating to the L3 platform will require some substantial changes in
any interfacing software used. Some commands have been changed, and some new commands have been introduced.
This quick-start section is intended to help guide users through these changes to ensure a smooth transition.

A few L2 commands have been deprecated, which means that they are no longer documented, but may still exist on the
L3 platform to help users through the transition period. However, there is no guarantee that this will always be the
case, so we strongly recommend that their use be discontinued as soon as possible.

3.9.2 Identifying the L3 platform
The L3 platform can be easily identified via the fwtype parameter of the id command.

In the case of the L3 platform, one would obtain:

>> id fwtype
<< id fwtype = 104

Whereas, in the case of the L2 platform, one would obtain:

>> id fwtype
<< id fwtype = 103

3.9.3 Deprecated commands
The following commands have been deprecated:

stop: replaced by the disable command.
With L2 platform:

>> stop
<< stop = stopped

With L3 platform:

>> disable
<< disable status = stopped

now: replaced by the clock command: see also the notes below about the clock command for other
options.
With L2 platform:

RBR#0005199revL - 40

•
•
•

•

•

>> now
<< now = 20170901120000

With L3 platform:

>> clock datetime
<< clock datetime = 20170901120000

starttime: replaced by the deployment command.
endtime: replaced by the deployment command.
status: replaced by the deployment command.
With L2 platform:

>> starttime
<< starttime = 20000101000000
>> endtime
<< endtime = 20991231235959
>> status
<< status = stopped

With L3 platform:

>> deployment
<< deployment starttime = 20000101000000, endtime = 20991231235959, status = stopped

powerstatus: replaced by the power command. See also powerinternal and powerexternal
commands.
With L2 platform:

>> powerstatus
<< powerstatus source = usb, int = 0.00, ext = 0.00, capacity = 24.000

With L3 platform:

>> power
<< power source = usb, int = 12.40, ext = 0.00

read: replaced by the readdata command.
With L2 platform:

>> read data 1 1000 2000
<< data 1 12 2000<cr><lf><bytes[2000..2011]-of-data><crc>

With L3 platform:

RBR#0005199revL - 41

•
•

•

•

•

>> readdata dataset = 1, size = 1000, offset = 2000
<< readdata dataset = 1, size = 12, offset = 2000<cr><lf><bytes[2000..2011]-of-data><crc>

3.9.4 Removed commands
errorlog
altitude: replaced by the settings command.
With L2 platform:

>> altitude
<< altitude = 150.0
>> altitude = 0.26
<< altitude = 0.26

With L3 platform:

>> settings altitude
<< settings altitude = 150.0000
>> permit command = settings
<< permit command = settings
>> settings altitude = 0.26
<< settings altitude = 0.2600

3.9.5 Improved commands and new parameters
fetch: the fetch command allows now a specific subset of channels to be sampled.
With L3 platform:

>> fetch channels = 3|2
<< 2017-10-21 11:50:49.000, 12.7052 dbar, 18.1745 C

powerinternal and powerexternal: track power usage.
With L3 platform:

>> powerinternal
<< powerinternal batterytype = nimh, capacity = 138.0e+003, used = 100.1e+003
>> powerexternal
<< powerexternal batterytype = fermata_lisocl2, capacity = 22.0e+006, used = 100.1e+003

wifi: new parameters have been added.
With L2 platform:

RBR#0005199revL - 42

•

•

•
•

>> wifi
<< wifi timeout = 120, commandtimeout = 60

With L3 platform:

>> wifi
<< wifi enabled = false, state = n/a, timeout = 120, commandtimeout = 60, baudrate = 921600

sampling: availablefastperiods parameter added
With L3 platform:

>> sampling availablefastperiods
<< sampling availablefastperiods = 500|250|125|63

outputformat: support parameter renamed to availabletypes.Now uses pipe separation between
list items
With L2 platform:

>> outputformat support
<< outputformat support = caltext01, caltext02, caltext03, caltext04

With L3 platform:

>> outputformat availabletypes
<< outputformat availabletypes = caltext01|caltext02|caltext03|caltext04

With L2 platform:

>> outputformat channelslist
<< outputformat channelslist = temperature (C), pressure (dbar), pressure (dbar), depth (m)

With L3 platform:

>> outputformat channelslist
<< outputformat channelslist = temperature(C)|pressure(dbar)|pressure(dbar)|depth(m)

deployment replaces the starttime, endtime, and status commands
enable: status is now reported as a key-value pair, and warnings reported via a parameter. Command
does not fail if logging is already active.
With L2 platform:

>> enable erasememory = true
<< E0401 estimated memory usage exceeds capacity, enable = logging

With L3 platform:

RBR#0005199revL - 43

•

•

•

•

>> enable erasememory = true
<< enable status = logging, warning = none
>> enable erasememory = true
<< enable status = logging, warning = W0408

disable: status is now reported as a key-value pair. Command does not fail if logging not active.
With L2 platform:

>> disable
<< disable = stopped

With L3 platform:

>> disable
<< disable status = stopped

verify: status is now reported as a key-value pair and warning parameter added as well.
With L2 platform:

>> verify
<< verify = logging

With L3 platform:

>> verify
<< verify status = logging, warning = none

clock: reports and sets the date and time as the datetime parameter and incorporates the UTC offset
setting as the offsetfromutc parameter
With L2 platform:

>> now
<< now = 20170901120000
>> now = 20170901155450
<< now = 20170901155450

With L3 platform:

>> clock
<< clock datetime = 20170901120000, offsetfromutc = +1.20
>> clock datetime = 20170901155450
<< clock datetime = 20170901155450

link: type is now reported as a key-value pair
With L2 platform:

RBR#0005199revL - 44

•

•

•

•

>> link
<< link = usb

With L3 platform:

>> link
<< link type = usb

permit: command is now received as a key-value pair
With L2 platform:

>> permit memclear
<< permit = memclear

With L3 platform:

>> permit command = memclear
<< permit command = memclear

memformat: support parameter renamed to availabletypes,uses pipe separation between list items.
With L2 platform:

>> memformat support
<< memformat support = rawbin00, calbin00

With L3 platform:

>> memformat availabletypes
<< memformat availabletypes = rawbin00|calbin00

channels: latency parameter renamed to settlingtime
With L2 platform:

>> channels latency
<< channels latency = 300

With L3 platform:

>> channels settlingtime
<< channels settlingtime = 300

channel: all keyword replaced by allindices and alllabels. Added channel labels.
With L2 platform:

RBR#0005199revL - 45

•

•
•
•

•
•

•

•

>> channel all type
<< channel 1 type = temp01 | channel 2 type = pres24

With L3 platform:

>> channel all type
<< E0108 invalid argument to command: 'all'
>> channel allindices type
<< channel 1 type = temp01 || channel 2 type = pres24
>> channel alllabels type
<< channel temperature_00 type = temp09 || channel pressure_00 type = pres24

calibration: all keyword replaced by allindices and alllabels. Added channel labels
With L2 platform:

>> calibration all datetime
<< calibration 1 datetime = 20171220161738 | calibration 2 datetime = 20171220161738

With L3 platform:

>> calibration all datetime
<< E0108 invalid argument to command: 'all'
>> calibration allindices datetime
<< calibration 1 datetime = 20171220161738 | calibration 2 datetime = 20171220161738
>> calibration alllabels datetime
<< calibration temperature_00 datetime = 20171220161738 | calibration pressure_00 datetime =
20171220161738

sensor: support allindices and alllabels keywords.
getall: command added.
info: command added.

3.9.6 Removed parameters
sampling schedule
calibration type

3.9.7 Syntactical changes
Reference to channel via labels

>> fetch channels = pressure01|temperature01
<< 2017-10-21 11:50:49.000, 12.7052 dbar, 18.1745 C

|| instead of | for all,allindices,alllabels keywords.
With L2 platform:

RBR#0005199revL - 46

•

>> channel all type
<< channel 1 type = temp09 | channel 2 type = cond06

With L3 platform

>> channel alllabels type
<< channel temperature_00 type = temp09 || channel conductivity_00 type = cond06
>> channel allindices type
<< channel 1 type = temp09 || channel 2 type = cond06

Beside the command relying on alllabels and allindices, all commands now support the all keyword.

RBR#0005199revL - 47

3.10 Tips for system integrators

3.10.1 Default deployment start and end time
The command deployment sets the start and end time of a deployment. This concept of start/end time is beneficial
mainly to standard products users. In the context of an integration with a host controller, it is generally useless,
scheduling of logging or streaming being controlled directly by the host controller. Furthermore, on some system the
clock might just be discarded and timestamping applied by host controller (streaming instruments). In order to not
have to set correctly the start and end time relative to the onboard clock, one simple solution is to set them as follows:

>> deployment starttime = 20000101000000 endtime = 20991231235959

The onboard RTC clock minimum date time is 2000/01/01 00:00:00 and the maximum date time is 2099/31/12 23:59:59.

3.10.2 Sampling rates
The sampling command allows the user to set faster than 1Hz sampling rate by specifying a number of milliseconds
below 1000. It also reports a list of milliseconds values (see availablefastperiods parameter). As there is in many cases
no direct conversion between an integer number of milliseconds and a frequency in Hertz, the following explains how to
convert from one to another.

Converting from Hz to milliseconds
If Fs is the sampling rate in Hz, then the number of milliseconds to be used as a parameter for the sampling command,
is calculated as (using integer division):

Converting from milliseconds to Hz
If Ts is the number of milliseconds reported by the logger as the period (see sampling command), then the
corresponding sampling rate Fs in Hz, is calculated as (using integer division):

Examples
If the logger needs to be deployed at 13Hz, and this sampling rate is available, then the period to be used would be 77
ms.

If the logger is deployed with a period of 53 ms, the effective sampling rate is 19Hz.

3.10.3 Future proofing development
The chapter Command Processing and Timeouts gives a good overview on best practices on how to parse and handles
logger commands.

RBR#0005199revL - 48

1.
2.
3.
4.

For OEM customers using more than one configuration or planning to, it is good practice to not rely on a fixed channel
order (between a T.D configuration and a C.T.D configuration, the temperature channel is not necessarily at the same
index). In order to identify available channels on a platform, the best way is to use labels (see channel). It is also not
recommended to identify channels via their channel type as they might change for the same configuration over time.
Those are generated at RBR factory and correspond to the physical properties measured.

In order to process all the commands, RBR suggests to use a command buffer of 1Kbyte, as it will cover most of
commands to the exception of getall, help and, when all channels are requested, sensor, channel, calibration.

3.10.4 Power management and power cycling behavior
The RBR logger can accommodate two power sources: internal batteries (see powerinternal) or external power source
(see powerexternal).

The RBR logger handles power management automatically, switching automatically to one or the other power source
depending on power availability. The RBR L3 also handles automatically which power domains should be enabled or
not depending on its current state (sampling, asleep, in communications). In systems which power cycle the logger, a
full reset will be obtained by powering off the unit at least 5 minutes due to internal capacitors.

There is no dedicated battery to maintain the onboard clock. As a consequence, the onboard clock might be lost every
time there is no power source available. In such case the date and time will reset at 2000-01-01 00:00:00. If the logger
endures a reset while logging, and the clock is lost, the logger will continue logging but timestamps might restart
at 2000-01-01 00:00:00 even if the starttime (see deployment) is set to another date/time.

If an instrument is power cycled while it was logging or streaming, it will continue streaming and logging (even if the
RTC clock is reset). In the case of an instrument streaming, measurements will start to be streamed after the settling
time and readtime periods expire (see channels).

In order to enforce a full hardware reset, the following sequence should be followed:

power off the unit
wait 5 minutes
power on the unit
wait 4 seconds before sending any commands (initialization time)

3.10.5 Memory format
Except in the case of operating a BPR instrument in seismic application, the Easyparse "calbin00" memory format
should be used.

Upon power cycling the instrument may take up to 4 seconds to initialize. During that initialization period,
characters transmitted to the instrument might not be received, and commands not processed correctly.



When the instrument is not powered, all UART and RS232 lines must be in high impedance mode, with no pull-
up resistors connected



RBR#0005199revL - 49

3.10.6 Error handling

Instrument not responding
If the instrument stop responding to any commands, first apply a full hardware reset (as described above).
Send the command id followed by the command disable, if the instrument is still not responding repeat the same
procedure with a baudrate 115200 bps (default baudrate if configured baudrate lost).

Instrument reporting an hardware failure
If the instrument is reporting an hardware failure error code as described in Error messages, one course of action is to
apply a full hardware reset (as described above).

Instrument reporting error codes in the measurements
Most of the error codes reported (see EasyParse "calbin00" format) reflects an hardware failure of some sort except
for Error-14 which could just reflect a value outside of an equation.
Sometimes, this error can be a transient and resolves by itself.
However, if the instrument is always reporting the same error for some period of time, one possible course of action is
to disable logging/scheduling, do not issue any fetch for 10 seconds, and enable again the unit.
If this does not resolve the issue, a full hardware reset (as described above), is advised. If one full hardware reset does
not resolve the issue, it is unlikely that performing other full hardware reset will do.

In any case, only channels reported as Error should be discarded. A classical example is an instrument carrying cabled
sensors. If a cable is damaged, the measurements associated with the sensor are likely to be reported as errors.
Applying previous methods won't help and measurements from other channels are still valid and useful.

3.10.7 Electronic Static Discharge

Various electrical and electronic components are vulnerable to ESD. RBR PCBAs should be handled in a static
controlled environment



RBR#0005199revL - 50

4 Commands

RBR#0005199revL - 51

4.1 Time and Schedule

RBR#0005199revL - 52

•
•

4.1.1 clock

Usage
>> clock [datetime | offsetfromutc]

Security
Unsafe.

Description
Retrieve or set the logger's current date and time:

datetime [= <YYYYMMDDhhmmss>], reports or sets the current date and time.
offsetfromutc [= <+/-hh.hh>] is intended to record the local timezone used when the logger was
deployed, as an offset from Universal Coordinated Time (UTC). This can facilitate correct
interpretation of the time information, even if the downloaded data file is reviewed in a different time
zone. The offset is specified in hours; fractional hours are permitted to support time zones which
require this, and the offset is always reported to two decimal places. When specifying a value, any
simple numeric format compatible with floating point representation may be used; for example 11,
+11, or 11.00 would all be accepted. Setting this parameter does not change the logger's time as
reported by the datetime parameter; it is intended simply as a record of the local time zone. However,
setting the date and time using the datetime parameter erases this setting; it must be restored if
necessary. By default the parameter is in the erased state, in which case it is reported as unknown.

Examples

>> clock
<< clock datetime = 20170401120000, offsetfromutc = +1.00

>> clock datetime = 20170401120130
<< clock datetime = 20170401120130
>> clock
<< clock datetime = 20170401120130, offsetfromutc = unknown

Errors
Error E0105 command prohibited while logging
Date/time may not be modified while logging is in progress; reading is permitted.

Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not a valid date/time.

RBR#0005199revL - 53

RBR#0005199revL - 54

•
a.

b.

c.

d.

e.

f.

g.

4.1.2 sampling

Usage
>> sampling [mode | period | availablefastperiods | userperiodlimit | burstinterval | burstlength | gate]

Security
Unsafe.

Description

Allows various parameters to be reported or set for the next deployment. The <parameter>s currently supported are:
mode [= <mode>] reports or sets the sampling mode for the current schedule:

continuous mode is supported by all loggers; measurements are taken and stored at the
specified period between the start and end times.
burst mode is available for loggers which are so configured in the factory; measurements are
taken and stored in bursts between the start and end times. The time between the start of two
consecutive bursts is given by the burstinterval, the number of measurements in the burst is
given by the burstlength, and the time between measurements within the burst is given by the
period.
wave mode is available for loggers which are so configured in the factory, and with one
exception is identical to burst mode as far as the logger's behaviour is concerned. The two
modes are distinct to allow host software to process the burst measurements for wave
applications. The exception is that the altitude command is available only when the logger is
capable of the wave sampling mode.
average mode is available for loggers which are so configured in the factory. It works identically
to burst mode, except that instead of storing every measurement in the burst, the average
value of all measurements is computed and stored as a single sample value at the end of the
burst.
tide mode is available for loggers which are so configured in the factory, and is identical to
average mode as far as the logger's behaviour is concerned. The two modes are distinct to
allow host software to process the data for tide monitoring applications.
regimes mode is available for all loggers, but is intended for vehicle integration. Instead of a
deployment containing a single sampling period, averaging burstlength, etc, the regimes mode
permits multiple sampling periods, averaging bins, and sampling periods to be set for different
environmental conditions-pressure regimes.
ddsampling mode is available for all loggers, but is mainly intended for vehicle integration.
Instead of a deployment containing a single sampling period, the ddsampling mode permits
two sampling periods depending on the the current direction of the logger (descending or
ascending). See command ddsampling.

Use of directional dependent sampling requires the logger to have a suitable sensor for
measuring pressure. Firmware versions 1.135 or later will check this condition when an attempt
is made to set ddsampling mode. If no suitable sensor is available the following error message
is returned:



RBR#0005199revL - 55

•

•

•

•

a.
b.
c.

period [= <period>] reports or sets the time between measurements.
This is straight forward in continuous mode; in any of the other modes it is the time between
continuous measurements within the burst. The <period> is specified in milliseconds.
Values for 1Hz sampling or slower are supported by all loggers, and must be given in multiples of 1000.
In continuous mode the permitted range is typically 1000 (one second) to 86400000 (24 hours), in
increments of 1000. Some loggers may have a lower limit which is more than 1000 if an attached
sensor has a very slow data acquisition time. For all other modes the upper limit is 255000 (about 4
minutes); this is unlikely to be a constraint in practice, as the period is the time between
measurements within the burst.
If the logger is configured to support fast (sub-second) measurement periods for the selected mode,
the <period> must correspond to an exact frequency in Hz, to the nearest millisecond. Permitted
values are further constrained to a supported subset of sample rates, which may be determined via
the availablefastperiods parameter described below. See also Tips for system integrators.

Note that fast measurement periods may be supported in some modes but not others, depending on
the logger's configuration.

availablefastperiods reports a list of the fast measurement periods available for the logger for
sampling rates faster than 1Hz. Each available period is reported to the nearest millisecond, and the
values are separated by a vertical bar, or 'pipe' character, '|'. If there are no fast periods available, the
word none is returned instead of a list of values. When a list is reported, the period for sampling rates
faster than 1Hz can be set to any value in the list, but no others.

Note that the periods given in the list may be supported in some modes but not others, depending on
the logger's configuration.

userperiodlimit reports the minimum period which can be used in 'fast' sampling modes, in
milliseconds; the period can not be set to a value less than this.

gate reports any gating condition currently enabled.
A gate is an extra requirement that must be satisfied before sampling will occur, in addition to the
logger's current time being between the start and the end times. The following gating conditions are
presently defined:

none: no gating conditions are enabled.
thresholding: a threshold requirement must be satisfied; see the thresholding command.
twistactivation: the end-cap must be in the "on" position; see the twistactivation command.

Error E0114

For reasons relating to the logger's internal operation, not all types of pressure sensor
are suitable for use; for example, high precision quartz sensors can not be used to
control directional dependent sampling.

RBR#0005199revL - 56

d.

•

•

invalid: two or more gating conditions have been selected, this is not currently possible and
will prevent the logger from being enabled.

For further information about gated sampling, see the section Gated Sampling.

burstinterval [= <burstinterval>] reports or sets the time between the first measurement of two
consecutive bursts; it is not the gap between the end of one burst and the start of the next. The
<burstinterval> is specified in milliseconds.
The absolute limits of the permitted range are 1000 (one second) to 86400000 (24 hours), and the
<burstinterval> must be set to a multiple of 1000. However, before the logger can be enabled for
sampling the value set must also be consistent with the measurement period and burstlength.

burstlength [= <burstlength>] reports or sets the number of measurements taken in each burst.
The permitted range is 2 to 65535, but before the logger can be enabled for sampling the value set
must also be consistent with the measurement period and burstinterval.
The constraining relationship between the burst parameters is: burstinterval > (burstlength *
period).

Examples

>> sampling all
<< sampling mode = continuous, period = 125, burstlength = 60, burstinterval = 300000, gate = none,
userperiodlimit = 63, availablefastperiods = 500|250|125|63

The logger has been programmed for continuous 8Hz sampling. It supports 2Hz, 4Hz, 8Hz, and 16Hz operation. The
programmed values of the burst parameters are reported but do not apply to continuous sampling. No gating condition
is in force.

>> sampling mode = average
<< sampling mode = average
>> sampling
<< sampling mode = average, period = 125, burstlength = 60, burstinterval = 300000, gate = none, userperiodlimit =
63

 Averaging enabled without changing the other parameters; the logger is now programmed to take a burst of 60
measurements at 8Hz every five minutes, and store the average of the 60 measurements.

>> sampling mode = burst, burstinterval = 600000
<< sampling mode = burst, burstinterval = 600000
>> sampling
<< sampling mode = burst, period = 125, burstlength = 60, burstinterval = 600000, gate = none, userperiodlimit = 63

The following parameters are available only if the logger is configured to support at least one of the average,
burst, tide, or wave modes.



RBR#0005199revL - 57

 The mode is changed to burst recording and the burst interval to ten minutes; the logger is now programmed to take a
burst of 60 measurements at 8Hz every ten minutes, storing all measurements in memory.

>> sampling
<< sampling mode = continuous, period = 250, gate = none, userperiodlimit = 125

The logger has been programmed for continuous 4Hz sampling. This logger does not support any of the other modes, so
the parameters are not reported.

>> sampling availablefastperiods
<< sampling availablefastperiods = 500|250|125|63

>> sampling availablefastperiods
<< sampling availablefastperiods = none

The first example shows support for sampling at 2Hz, 4Hz, 8Hz and 16Hz in at least one of the available modes; the
second example shows that no sampling faster than 1Hz is supported.

Errors
Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

Error E0108 invalid argument to command: '<invalid-argument>'
The command was given with an argument which is unrecognized or has an invalid value; for example "sampling mode
= mean", or "sampling schedule = 2".

Error E0109 feature not available
An attempt was made to use a feature which the logger is not configured to support; for example "sampling mode =
average" if the logger does not support averaging.

Error E0114 feature not supported by hardware
The logger does not have a pressure sensor suitable for controlling the directional dependent sampling mode.

RBR#0005199revL - 58

•

•

•

a.
b.
c.
d.
e.
f.

g.
h.
i.
j.

k.
l.

1.

2.

3.

4.1.3 deployment

Usage
>> deployment [starttime | endtime | status]

Security
Unsafe.

Description
Allows various parameters to be reported or set for the current deployment.

starttime [=<YYYYMMDDhhmmss>], retrieve or set the start date and time of the next deployment.

endtime [=<YYYYMMDDhhmmss>], retrieve or set the end date and time of the next deployment.

status is a read-only parameter which returns the current state of the finite state machine for the
instrument's logging function. Possible values are given below:

disabled : logging is not enabled.
pending : logging is enabled but before the start time.
logging : logging is in progress.
paused: logging paused, waiting for a resume command.
gated : logging paused, waiting for a gating condition to be satisfied.
finished : the programmed end time has been passed.
stopped : a disable command was received.
fullandstopped : memory full, logging has stopped.
full : memory full, logger continues to stream data.
failed : stopped, internal error.
notblank : memory failed to erase.
unknown : internal error, state unknown.

Most of these are self explanatory. In the very unlikely event that they occur at all, the
states failed, notblank and unknown arise from serious internal errors, and ideally the instrument should be returned
to RBR Ltd for further analysis. However, if it would be preferable to attempt deployment anyway, try these recover
procedures.

Send a permit memclear and memclear sequence, which may succeed in erasing the memory and
resetting the instrument status to disabled. It may then be possible to continue using the logger and
to enable it for a new deployment.
Send a reboot command, using the delay parameter if communicating over a USB link, then try (1)
above.
Remove all batteries, power, and USB connections from the logger for at least five minutes. Replace
the batteries or apply power, set the correct date and time (see the clock command), then try (1)
above.

If the failed status resulted from an attempt to enable the logger, then either it failed to store a deployment header in
memory, or the alarm time for the next sample could not be correctly loaded into the Real Time Clock/Calendar. If the

https://docs.rbr-global.com/display/L3DOC/memclear
https://docs.rbr-global.com/display/L3DOC/reboot
https://docs.rbr-global.com/display/L3DOC/.clock+v1

RBR#0005199revL - 59

logger does have a fault, the second case could happen again at any time during a deployment, so there is a risk that
the logger may fail again and the deployment will terminate early.

In any event the instrument should be returned to RBR Ltd for further analysis at the earliest available opportunity, with
as much detail as possible about the circumstances of the failure.

Examples

>> deployment
<< deployment starttime = 20171214000000, endtime = 20171214000000, status = disabled

>> deployment starttime = 20171217120000
<< deployment starttime = 20171217120000

>> deployment status
<< deployment status = disabled
>> enable
<< enable status = logging
>> deployment status
<< deployment status = logging

Errors
Error E0105 command prohibited while logging
starttime and endtime can not be modified while logging is in progress; reading is permitted.

Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not a valid date/time.

4.1.4 pauseresume

Usage
>> pauseresume

Security
Open

Description
This command is available in firmware versions 1.116 or later. It allows the host to determine if the pause/resume
feature is available on the instrument. It allows an elevated host to allow and deny the feature for the instrument.

RBR#0005199revL - 60

•

1.
2.

If successful, the command reports its state:

state, will be one of the values: "n/a", "paused", or "running".

Error conditions that would prevent the successful execution of the command are:

An older version of firmware that does not support the command is on the instrument.
The permission for the feature has not been allowed

Examples

>> pauseresume
<< E0109 feature not available

The feature is not allowed on this instrument.

>> pauseresume
<< E0102 invalid command 'pauseresume'

 The instrument firmware is older and does not recognize this feature.

>> pauseresume
<< pauseresume state = n/a

Either the deployment has not been enabled or the sampling mode is 'regimes'

>> pauseresume
<< pauseresume state = running

The deployment has been enabled and is not paused.

>> pauseresume
<< pauseresume state = paused

The deployment has been enabled and is paused.

Errors
E0102 invalid command
The logger does not support the sampling pause and resume feature.

E0109 feature not available
The feature has not been allowed.

RBR#0005199revL - 61

•

1.
2.
3.
4.

1.
2.

3.
4.

4.1.5 pause

Usage
>> pause

Security
Open

Description
This command is available in firmware versions 1.116 or later. It pauses an enabled deployment.

If successful, the command reports its status:

status, will be "paused".

Error conditions that would prevent the successful execution of the command are:

An older version of firmware that does not support the command is on the instrument.
The instrument has not be enabled for deployment.
A gating condition (twist, thresholding) is in effect for the deployment.
The instrument has been enabled in the 'regimes' sampling mode

When a pause is issued, the following will happen:

Streaming is immediately suspended if it was enabled for the deployment.
The current acquisition, if any, is terminated. For averages/tides, this means that the current sample
will be thrown away and not recorded in memory or streamed. For bursts/waves the burst will
terminate before the expected number of samples.
An event of type EVENT_PAUSE (0x2B) is stored in the data stream.
No further acquisitions will be scheduled until a resume command is received.

Examples

>> pause
<< pause status = paused

Deployment is now paused and no more samples will be taken once the current, if any, acquisition finishes.

>> pause
<< E0406 not logging

Cannot pause deployment before deployment is enabled.

RBR#0005199revL - 62

<< pause
>> E0415 more than one gating condition is enabled

Assuming that either the wet switch or twist activation has been enabled the pause and resume feature cannot be used.

Errors
E0102 invalid command
The logger does not support the sampling pause and resume feature.

E0109 feature not available
The feature has not been allowed.

E0406 not logging
The logger deployment is not enabled and so cannot be paused/resumed.

E0415 more than one gating condition is enabled
If one gating mechanism has already been enabled (wet switch, twist) the pause and resume feature cannot be used.

E0417 no gating allowed with regimes mode
The logger deployment is enabled with the regimes sampling mode so the pause/resume feature cannot be used.

RBR#0005199revL - 63

•

1.
2.
3.
4.

1.
2.

3.
4.

4.1.6 resume

Usage
>> resume

Security
Open

Description
This command is available in firmware versions 1.116 or later. It resumes an enabled deployment which was previously
paused using the pause command.

If successful, the command reports its status:

status, will be one of the values: "pending" or "logging".

Error conditions that would prevent the successful execution of the command are:

An older version of firmware that does not support the command is on the instrument.
The instrument has not be enabled for deployment.
A gating condition (twist, thresholding) is in effect for the deployment.
The instrument has been enabled in the 'regimes' sampling mode

When a resume is issued, the following will happen:

Streaming is immediately activated if it was enabled for the deployment.
The next acquisition is scheduled for the appropriate time; in the case of average/burst/wave/tide, the
next time will be aligned to the interval time.
An event of type EVENT_RESUME (0x2A) is stored in the data stream.
Acquisitions will continue to be scheduled at normal intervals.

Examples

>> resume
<< resume status = pending

Deployment has resumed running as scheduled.

>> resume
<< resume status = logging

Deployment has resumed running as scheduled.

RBR#0005199revL - 64

Errors
E0102 invalid command
The logger does not support the sampling pause and resume feature.

E0109 feature not available
The feature has not been allowed.

E0406 not logging
The logger deployment is not enabled and so cannot be paused/resumed.

E0415 more than one gating condition is enabled
If one gating mechanism has already been enabled (wet switch, twist) the pause and resume feature cannot be used.

E0417 no gating allowed with regimes mode
The logger deployment is enabled with the regimes sampling mode so the pause/resume feature cannot be used.

RBR#0005199revL - 65

RBR#0005199revL - 66

1.
2.

4.2 Gated Sampling

Gated sampling is available with loggers which are configured to support it. Normally, a logger will sample at the
programmed period or interval when its current time is between the start time and the end time. If a gating condition is
specified, then this further requirement must also be met before sampling will occur.

The start time and end time may still be used with gated sampling to define when the logger will examine the gating
condition to see whether or not it should be sampling, but the logger will not sample if its current time is outside this
range, no matter what state the gating condition is in. To have sampling activity depend only on the gating condition,
the start and end times should be set to the extremes of the logger's date/time range: these are respectively 2000/01/01
00:00:00 and 2099/12/31 23:59:59. Other combinations are possible; for example a valid start time in the future may be
set to ensure sampling is not started before then if the gating condition is inadvertently satisfied, while the end time is
set to the maximum limit so that only the gating condition will stop the logger once sampling has started.

If a gating condition has been selected, it will be reported as the gate parameter in response to the sampling
command. If sampling is paused by a gating condition, but the logger would otherwise be sampling and recording data,
it will respond to the status command with the value gated.

When the logger's status is gated, it responds to commands in some instances as if it were logging. For example,
schedule parameters may not be modified while the logger is enabled for sampling, and this includes the gated
condition.

The following gating conditions are presently available, if the logger is configured to support them.

Thresholding.
Twist Activation.

RBR#0005199revL - 67

•
a.
b.

•

•

•

•
a.

b.

•

•

4.2.1 thresholding

Usage
>> thresholding [enabled | state | channelindex | channellabel | condition | value | interval]

Security
Unsafe.

Description
Reports or sets the parameters which control threshold gated sampling. The <parameter>s currently supported are:

enabled [= <enabled>]
true, enables the threshold gating feature.
false, disables the threshold gating feature.

state is a read-only parameter which shows whether logging is currently paused or running due to
the thresholding configuration, or n/a because thresholding is not enabled or because logging has not
yet been enabled.

channelindex [= <index>] the index of the channel to use for the threshold check. This must be a
channel that exists in the logger; the first channel has an <index> of 1. The channel must also have a
valid calibration, because the comparison of data readings with the threshold value is made in
calibrated units.

channellabel [= <label>] the label of the channel to use for the threshold check. This must be a
channel that exists in the logger; the first channel has an <index> of 1. The channel must also have a
valid calibration, because the comparison of data readings with the threshold value is made in
calibrated units.

condition [= <condition>]
above, sampling will occur when the monitored parameter is above the specified threshold
value.
below, sampling will occur when the monitored parameter is above the specified threshold
value.

value [= <value>] specifies the threshold value in calibrated units, given as a number compatible with
floating point formats.

interval [= <milliseconds>] specifies the interval between threshold checks. The value is given and
reported in milliseconds, but must correspond to a non-zero whole number of seconds, and not be
greater than 24 hours (86400000ms).

RBR#0005199revL - 68

The basic validity checks on parameters indicated above are performed immediately. Further checks may result in error
messages at the time the logger is enabled; for example, setting a threshold check interval shorter than the logger can
achieve in its programmed operating mode is not permitted.

Examples

>> thresholding
<< thresholding enabled = false, state = n/a, channelindex = 1, channellabel = temperature_01, condition = above,
value = 20.0000, interval = 15000

Threshold gating is not enabled; if it were, the logger would check the value read from Channel 1 every 15 seconds, and
start normal sampling if above 20.0.

>> thresholding interval = 10000, value = 17.5
<< thresholding value = 17.5000, interval = 10000

The gating parameters are changed so that the logger would check Channel 1 every 10 seconds, and start normal
sampling if the value were above 17.5.

Threshold-gated sampling is used to turn recording of data on or off, depending on the data value monitored
from the selected channel.
When data recording is on, the logger is in the logging state. Readings from all channels are acquired, stored
and otherwise processed according to the logger's programmed settings and schedule parameters. When data
recording is off, the logger is in the gated state. Readings from only the selected channel are taken at the
specified interval, and compared to the threshold value; they are not stored or otherwise processed.
When a logger is enabled with thresholding activated, it will initially assume the gated state if the start time
has already passed. If the start time is in the future, the logger will initially be in the pending state, and move
to the gated state when the start time is reached.
When in the gated state, if the reading from the selected channel satisfies the programmed condition (above
or below) when compared to the threshold value, the logger will move to the logging state and begin to
acquire and record data normally. In most situations normal sampling will begin immediately, but it is possible
for there to be a delay. For example, if the thresholding interval were 15 seconds, the sampling period 10
seconds, and a transition occurred at a time hh:mm:15 , the next scheduled sample would not be due until
hh:mm:20 , so there would be a 5 second delay.
 When in the logging state, the reading from the thresholding channel is still monitored at every sample time.
If it no longer satisfies the programmed condition, the logger will move back to the gated state. However, this
does not happen immediately. The logger remains in the logging state for a guard time of 10 seconds after
the thresholding condition first fails; only if readings from the thresholding channel fail to satisfy the condition
for 10 seconds continuously does the logger actually move to the gated state. If at any point during the 10
second guard time the condition is once again satisfied, the logging state persists and the guard time is reset,
awaiting another possible transition.
This behaviour prevents data acquisition being interrupted by short episodes during which the thresholding
condition is not satisfied.



RBR#0005199revL - 69

>> thresholding enabled = true
<< thresholding enabled = true

Threshold gated control of sampling is enabled.

Errors
Error E0109 feature not available
The logger is not configured to support threshold gated control of sampling.

Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

Error E0108 invalid argument to command: '<invalid-argument>'
The command was given with an argument which is unrecognized or has an invalid value; for example "thresholding
enabled = yes", or "thresholding interval = 10".

Error E0601 no calibration for channel '<channel-index>'
The channel selected for threshold checking is not calibrated.

RBR#0005199revL - 70

•
a.
b.

•

4.2.2 twistactivation

Usage
>> twistactivation [enabled | state]

Security
Unsafe.

Description
Reports or sets the parameters which control twist-activation-gated sampling. The <parameter>s currently supported
are:

enabled [= true | false]
true, enables the twist activation gating feature.
false, disables the twist activation gating feature.

state is a read-only parameter which shows whether logging is currently paused or running due to
the position of the end cap. The state may also be reported as n/a because
a) twist activation is not enabled, or
b) the logger has not yet been enabled for sampling, or
c) the logger is enabled but still before the start time (deployment status = pending).

The basic validity checks on parameters indicated above are performed immediately. Further checks may result in error
messages at the time the logger is enabled; for example, thresholding and twist activation gating features may not be
enabled simultaneously.

Examples

>> twistactivation
<< twistactivation enabled = false, state = n/a

Twist-activation-gated logging is not enabled. If it were, the logger would sample data depending on the position of the
end cap.

>> twistactivation enabled = true
<< twistactivation enabled = true, state = n/a
>> enable
<< enable status = gated, warning = none
>> twistactivation
<< twistactivation enabled = true, state = paused

RBR#0005199revL - 71

Twist-activation-gated control of sampling is enabled, and logging is paused pending twist activation.

Errors
Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

Error E0108 invalid argument to command: '<invalid-argument>'
The command was given with an argument which is unrecognized or has an invalid value; for example "twistactivation
enabled = yes".

Error E0109 feature not available
The logger is not configured to support twist-activation-gated control of sampling.

RBR#0005199revL - 72

4.3 Vehicle support

RBR#0005199revL - 73

•
a.
b.

•

•
a.

b.

4.3.1 regimes

Usage
>> regimes [direction | count | reference]

Security
Unsafe.

Description
Sets and returns information about the regimes. These are only used if the regimes mode is in use (see sampling). This
is intended for use when the instrument is integrated into moving platforms.

direction [= <direction>]
ascending indicates that the instrument is intended to ascend in the water column.
descending indicates that the instrument is intended to descend in the water column.

Note: the boundary values specified for each individual regime are the first boundary in the regime; so if the
instrument is ascending, the boundary specified is the lower boundary; and vice-versa.

count [= <countvalue>] indicates the number of regimes that are set. The minimum number is 1 and
the maximum number of regimes is 3.

reference [= <reference>]
absolute indicates that the absolute pressure is used as reference for the determination of the
current regime and bin.
seapressure indicates that the sea pressure is used as reference for the determination of the
current regime and bin. The sea pressure is the difference between the absolute pressure
measured and the atmospheric pressure setting defined via the command settings.

Examples

>> regimes
<< regimes direction = ascending, count = 3, reference = absolute

There are three specified regimes with the individual boundary values being interpreted as the lower values as the
instrument ascends through the water column.

Errors
Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

RBR#0005199revL - 74

Error E0108 invalid argument to command: '<invalid-argument>'
The command was given with an argument which is unrecognized or has an invalid value; for example "regimes
direction = horizontal", or "regimes count = 125".

Error E0109 feature not available
An attempt was made to use a feature which the logger is not configured to support.

RBR#0005199revL - 75

•

•

•

4.3.2 regime

Usage
>> regime <index> [boundary | binsize | samplingperiod]

Security
Unsafe.

Description
Returns information about the specified <index> regime. The first regime has an <index> of 1. <index> should be lower or
equal to the number or regimes reported by the regimes command at the time of issuing the command.
If direction (regimes command) is set to descending, the first regime corresponds to the regime the closest to the
surface. If direction is set to ascending, the first regime is the closest to the seabed. Depending on how is set
reference (regimes command), the logger use the absolute pressure or the sea pressure to determine the current
regime and the current bin.
The following parameters give the basic information available for all regimes.

boundary [= <firstboundaryvalue>] specifies the transition from one regime to the next, and is
interpreted as the first boundary in a region. The units are in dbar. The minimum precision is 1 dbar,
and the value should be between 0 dbar and 65535 dbar. verify and enable commands will check
that the regimes boundaries are strictly increasing if direction is descending and strictly decreasing if
direction is ascending, reporting an error E0416 for invalid regime settings if those constraints are
violated.

binsize [= <binvalue>] specifies the size (in dbar) used for each averaged bin. This is typically set by the
user to be a denominator of the total regime size, but if the last bin in the regime is smaller than the
rest, the measurement is stored early and the next regime commences. The minimum precision is
0.1dbar, and the value should be between 0.1 dbar and 6553.5 dbar. If the binsize is set to 0.0, the
logger will not average the data per bin during the regime and will just record/stream every
measurement.

samplingperiod [= <period>] has the same meaning as the period value in the sampling command,
but applies only to this particular regime. The maximum period is 65000 milliseconds.

When the vehicle is not in a defined regime, the logger will sample internally at the same rate as the first regime in order
to check when it has entered this regime. Measurements acquired during this period will not be stored or streamed.

If the sampling rate is different between two regimes, the logger can take up to 2 seconds to switch between
those two regimes. During this time, no samples will be acquired.



RBR#0005199revL - 76

The average for each bin is stored as soon as the vehicle enters the next bin in the direction set by the regimes
command. In the following figure the regime 2 bin 1 is stored as soon as the vehicle enters the the regime 2 bin 2. When
the vehicle goes back into the defined regime 2 bin 1 range, the measurements acquired are then discarded but all the
measurements acquired in the regime 2 bin 2 range are taken into consideration as long as the vehicle has not entered
yet the regime 2 bin 3.

The bin average is calculated without any kind of interpolation. In the case of a binsize set to 0.0, there is no averaging
whatsoever.

RBR#0005199revL - 77

Examples

>> regime 1
<< regime 1 boundary = 2000, binsize = 100.0, samplingperiod = 1000

Assuming the instrument is ascending, this indicates that the regime should commence as the sensor passes upwards
through 2000dbar, and that bins inside the regime should be 100dbar in size. For each bin, an average of all samples will

RBR#0005199revL - 78

be made, with the sampling period of the instrument set to 1000ms. This regime will continue until another comes into
force.

>> regime 3 boundary = 1000, binsize = 5.1, samplingperiod = 500

This sets the third regime to commence at 1000dbar, with a bin size of 5.1dbar and a sampling rate of 2Hz (500ms). As
there are no other regimes defined, this one has no second boundary, so the instrument would continue measuring
indefinitely and will only stop when the endtime is reached, or the stop command is issued.

>> regime 3
<< regime 3 boundary = 20, binsize = 0.0, samplingperiod = 167

Assuming the instrument is ascending, this indicates that the regime should commence as the sensor passes upwards
through 20 dbar, and that during this regime, every measurements will be recorded (sampled at 6Hz). As there are no
other regimes defined, this one has no second boundary, so the instrument would continue measuring indefinitely and
will only stop when the endtime is reached, or the stop command is issued.

Errors
Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

Error E0107 expected argument missing
An argument expected by the logger was not given with the command; for example, there must always be an <index>
argument.

Error E0108 invalid argument to command: '<invalid-argument>'
The command was given with an argument which is unrecognized or has an invalid value; for example "regime 1
boundary = -45", or "regime 5".

Error E0109 feature not available
An attempt was made to use a feature which the logger is not configured to support.

RBR#0005199revL - 79

•
a.
b.

•

•

•

•

1.

4.3.3 ddsampling

Usage
>> ddsampling [direction | fastperiod | slowperiod | fastthreshold | slowthreshold]

Security
Unsafe.

Description
Sets and returns information about the directional dependent sampling mode. These settings apply only if the
ddsampling mode is in active use (see sampling). This mode is intended for use when the instrument is integrated into
a moving platform.

direction [= <direction>]
ascending indicates that the instrument should sample at the fast rate during ascents.
descending indicates that the instrument should sample at the fast rate during descents.

fastperiod [= <period>] has the same meaning as the period value in the sampling command, but
applies only when the logger detects that it is moving in the preferred direction. This must be shorter
than the provided slowperiod parameter.

slowperiod [= <period>] has the same meaning as the period value in the sampling command, but
applies only when the logger detects that it is not moving in the preferred direction. This must be
longer than the provided fastperiod parameter.

fastthreshold [= <dbar>] sets the boundary, based on the previous profile, where the logger should
switch to the fast period sampling. The minimum precision is 0.1dBar and value should be greater
than 0.

slowthreshold [= <dbar>] sets the boundary, based on the current profile, where the logger should
switch to the slow period sampling. The minimum precision is 0.1dBar and value should be greater
than 0.

In order to configure the logger to maximize deployment life without compromising data in the preferred direction, the
following guidelines can be used:

fastthreshold should be greater than maxspeed x (slowperiod + modetransitiontime) +
maxprofilevariation where:

The directional dependent sampling mode relies on the logger profiles detection scheme (see Profile
detection events generation). Therefore, it is intended only for vehicles that profile overall pressure changes
greater than 3 dbar.
If the direction is set to ascending and an upcast is detected while sampling at the slow period, the logger will
revert to the fast sampling period even if the threshold has not been crossed (and vice versa if the direction is
set to descending). See the following example.



RBR#0005199revL - 80

2.

modetransitiontime is the sum of the settling and read times as reported by the channels
command, plus one second (blanking period while switching sampling rate).
maxspeed is the maximum speed of the vehicle along the depth axis.
maxprofilevariation is the maximum variation in dbar from one profile to another.

slowthreshold should be greater than the looping effect the vehicle might endure during its ascent
(or descent).

Examples

>> ddsampling
<< ddsampling direction = ascending, fastperiod = 167, slowperiod = 1000, fastthreshold = 5.0, slowthreshold = 1.6

The following picture gives a global overview of how the logger would behave with the previous example on a 20 dbar
profile setup after it has been started.

The next picture shows how the directional dependent sampling would behave in the case of a profile much shorter
than the previous one. In such a case the logger would detect an upcast while slow sampling and would then go back to
the fast sampling mode.

Use of directional dependent sampling requires the logger to have a suitable sensor for measuring pressure.
Firmware versions 1.135 or later will check this condition and respond to the ddsampling command with this
error message if no suitable sensor is available:
Error E0114

For reasons relating to the logger's internal operation, not all types of pressure sensor are suitable for use; for
example, high precision quartz sensors can not be used to control directional dependent sampling.



RBR#0005199revL - 81

Errors
Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

Error E0108 invalid argument to command: '<invalid-argument>'
The command was given with an argument which is unrecognized or has an invalid value; for example "ddsampling
direction = horizontal", or "ddsampling fastthreshold= 0.0".

Error E0109 feature not available
An attempt was made to use a feature which the logger is not configured to support.

Error E0114 feature not supported by hardware
The logger does not have a pressure sensor suitable for controlling the directional dependent sampling mode.

RBR#0005199revL - 82

4.4 Real time data

RBR#0005199revL - 83

•

•

a.

b.

4.4.1 outputformat

Usage
>> outputformat [type | availabletypes | channelslist | labelslist]

Security
Unsafe.

Description
Reports or sets the format used to transmit data over the communications link; this format applies to both 'Fetched'
data, and live 'Streamed' data if available. If no arguments are given, the current setting of the type parameter is
reported.

The parameters currently supported are:

type [= <type>] set and/or report the current output format type. Not all instruments support all the
formats; query the availabletypes parameter to check which formats are available.

availabletypes reports the formats which are available.
At present, the formats which may be supported are:

caltext01, Calibrated ASCII output.
The output starts with a timestamp giving years, months, days, hours, minutes, seconds and
thousandths (milliseconds), punctuated as shown. A value for each channel is then sent; this is
the measured parameter after conversion to physical units according to the instrument's
current calibration. All values are shown to 4 decimal places. A comma and space separate the
timestamp and values.
Format:
YYYY-MM-DD hh:mm:ss.ttt, <value1>, <value2>, ...

Example for a 3-channel logger:
2017-09-10 11:24:14.000, 38.6664, 21.5183, 10.9601

caltext02, Calibrated ASCII output.
The output starts with a timestamp giving years, months, days, hours, minutes, seconds and
thousandths (milliseconds), punctuated as shown. A value for each channel is then sent; this is
the measured parameter after conversion to physical units according to the instrument's
current calibration. All values are shown to 4 decimal places. Following the value, and
separated from it by a space, is a short string representing the units of measurement. A comma
and space separate the timestamp, and the information for each channel.
Format:
YYYY-MM-DD hh:mm:ss.ttt, <value1 units1>, <value2 units2>, ...

Example for a 3-channel logger CTD logger:
2017-09-10 11:52:21.000, 38.6671 mS/cm, 22.0217 C, 10.9596 dBar

RBR#0005199revL - 84

c.

d.

e.

•

caltext03, Calibrated ASCII output.
The output starts with a timestamp giving years, months, days, hours, minutes, seconds and
thousandths (milliseconds), punctuated as shown. A value for each channel is then sent; this is
the measured parameter after conversion to physical units according to the instrument's
current calibration. All values are shown with enough significant digits ensuring no loss of
resolution. A comma and space separate the timestamp and values.
Format:
YYYY-MM-DD hh:mm:ss.ttt, <value1>, <value2>, ...

Example for a 3-channel logger CTD logger:
2017-09-10 11:52:21.000, 38.6671142, 22.0217241, 10.9596633

caltext04, Calibrated ASCII output.
The output starts with a timestamp giving years, months, days, hours, minutes, seconds and
thousandths (milliseconds), punctuated as shown. A value for each channel is then sent; this is
the measured parameter after conversion to physical units according to the instrument's
current calibration. All values are shown in 'engineering-notation' floating point (same as
scientific notation except that the exponents are constrained to be multiples of three) with
enough significant digits ensuring no loss of resolution. A comma and space separate the
timestamp and values.
Format:
YYYY-MM-DD hh:mm:ss.ttt, <value1>, <value2>, ...

Example for a 3-channel logger CTD logger:
2017-09-10 11:52:21.000, 38.6671142e+000, 22.0217124e+000, 1.95962418e+003
caltext07, Calibrated ASCII output. This output format is supported in firmware versions 1.109
or later.
The output starts with the keyword RBR followed by the serial number followed by a timestamp
giving years, months, days, hours, minutes, seconds and thousandths (milliseconds),
punctuated as shown. A value for each channel is then sent; this is the measured parameter
after conversion to physical units according to the instrument's current calibration. All values
are shown to 4 decimal places.
A 16-bit CRC using the CCITT polynomial f(x) = x^16 + x^12 + x^5 + 1, feeding bytes into the
generator LSB first and using 0xFFFF as a seed value, is then transmitted. All characters sent
including the 'R' character of the RBR keyword and the last space character before the <crc> are
used to calculate the CRC.
RBR keyword is separated by a space from the serial number. A comma and space separate the
serial number, the timestamp, values, and the CRC. The CRC is formatted in hexadecimal with a
leading 0x followed by 4 digits.
Format:
RBR <sn>, YYYY-MM-DD hh:mm:ss.ttt, <value1>, <value2>, ... , <crc>
Example for a 3-channel logger:
RBR 142152, 2017-09-10 11:24:14.000, 38.6664, 21.5183, 10.9601, 0xAD28

channelslist This reports a list of names and units for the active channels, in order. This list is helpful
in identifying the channel corresponding to each value in the transmitted data. Any channels which
have been turned off are excluded. The list will expand as support is added for more sensor types, so
not all firmware versions will support every sensor type listed. If there is more than one channel of a

RBR#0005199revL - 85

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

particular type, the same information is reported for all of them.
The list of all possible names is given below in alphabetical order. Some are quite generic, others are
very sensor specific :

backscatter
BTEX
calphase
CDOM
chlorophylll
conductivity
crude_oil
custom_fluorometer
cyanobacteria
depth
dissolved-02
fluoroescein
fluorometry-UV
measurement_count
methane
optical_brighteners
ORP
PAR
partial CO2 pressure
period
pH
phycocyanin
phycoerythrin
pressure
pressure_period
refined_fuels
rhodamine
salinity
specific_conductivity
speed of sound
temperature
temperature_period
transmittance
turbidity
voltage

RBR#0005199revL - 86

•

•

•

•

•

labelslist This reports the list of active channels labels, in order. This list is helpful in identifying the
channel corresponding to each value in the transmitted data. Any channels which have been turned
off are excluded. A channel's label is set upon request for OEM customers (see channel command).

Note that for all the caltext formats, any individual channel value may be replaced by one of the following:

Error-<EC>: an identifiable error occurred on this channel; for a list of the possible 2-digit error codes
<EC>, see the paragraph 'Error Codes' in the Section 'Sample data standard format'.
nan: the value is Not A Number in IEEE floating point format, which indicates an internal problem with
calculating the value.
inf / -inf: attempting to calculate the value produced a result outside the range which can be
represented.
###: the channel is not calibrated, so an output value could not be calculated.

Examples

>> outputformat
<< outputformat type = caltext01, labelslist = temperature_00|pressure_00|salinity_00|
conductivitycelltemperature_00

>> outputformat type = caltext02
<< outputformat type = caltext02

>> outputformat availabletypes
<< outputformat availabletypes = caltext01|caltext02|caltext03|caltext04

>> outputformat channelslist
<< outputformat channelslist = temperature(C)|pressure(dbar)|salinity(PSU)|temperature(C)

>> outputformat labelslist
<< outputformat labelslist = temperature_00|pressure_00|salinity_00|conductivitycelltemperature_00

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The command was given with an argument which is unrecognized or misplaced.

RBR#0005199revL - 87

•
a.
b.

4.4.2 streamusb

Usage
>> streamusb [state]

Security
Open.

Description
This command can turn on or off the USB streaming. When USB streaming is on, acquired data is sent over the USB link
at the same time it is stored in memory. Refer to the outputformat command for descriptions of the data formats
which may be available.
Changing the state of USB streaming while logging is in progress is permitted, but will cause a time-stamped event to be
recorded in memory with the sample data.

This command takes a single parameter:

state [= <state>]
on, enables the USB streaming.
off, disables the USB streaming.

Examples

>> streamusb
<< streamusb state = on

>> streamusb state = off
<< streamusb state = off

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not valid or out of place.

Error E0109 feature not available
The logger is not configured to support streaming on the USB link.

RBR#0005199revL - 88

•
a.
b.

•

•

•

•

4.4.3 streamserial

Usage
>> streamserial [state | aux1_state | aux1_setup | aux1_hold | aux1_active | aux1_sleep | aux1_all]

Security
Open.

Description
If the logger is configured to support streamed data over the serial link, this command can turn the feature on or off,
and also configure the behaviour of an auxiliary RS-232 control output, AUX1. If the command is given with no
parameters, the value of the state parameter is reported. The operating parameters of the serial link, such as baud rate
and mode, are accessed using the serial command. This commands reports the state of the streamed data feature, and
optionally turns it on or off. When the feature is on, acquired data is sent over the serial link at the same time it is stored
in memory. Refer to the outputformat command for descriptions of the data formats which may be available. When the
feature is off, data is not sent. Changing the state of serial streaming while logging is in progress is permitted, but will
cause a time-stamped event to be recorded in memory with the sample data.

state [= <state>]
on, enables the serial streaming.
off, disables the serial streaming.

The aux1_... options configure the behaviour of an auxiliary RS-232 output signal AUX1, if the logger is configured to
support it. This signal is available only if the mode of the Serial link is set to RS-232; refer to the serial command for
details.

The signal can be used to control an external device such as a modem, but is intended only for the purpose of
transmitting streamed data. The logger may activate the signal during other transmissions on the serial link, but it is
intended only for enabling a transmitting device for remote monitoring of send-data-only installations. It is not
intended to be, and should not be used as, a general purpose flow control signal. Below are the descriptions of the
individual command parameters.

aux1_all: a read-only option which causes the values of all the other aux1_... parameters to be
reported.
aux1_state [= <state>]: reports the on/off state of the feature, or optionally enables or disables the
feature as required. When the feature is disabled, the remaining aux1_... parameters have no effect.
The default setting as shipped from the factory is off.
aux1_setup [= <setup_time>]: reports or sets the AUX1 signal set-up time, in milliseconds. When the
logger is sampling and is about to stream data over the serial link, this is the time for which AUX1 will
be set to the active level before the streaming transmission begins. The valid range of values is
10...120000 (10ms to 2 minutes); the default value as shipped from the factory is 1000ms.
aux1_hold [= <hold_time>]: reports or sets the AUX1 signal hold time, in milliseconds. This is the time
for which AUX1 will be held at the active level after the serial streaming transmission has finished. The
valid range of values is 10...120000 (10ms to 2 minutes); the default value as shipped from the factory
is 1000ms.

RBR#0005199revL - 89

•

•

aux1_active [= <activelevel>]: reports or sets the active level of the AUX1 signal seen by the external
device during the setup time, data transmission and hold time, either high or low. The high and low
signal levels are approximately +5V and –5V respectively, compatible with the RS-232 specification.
The default setting as shipped from the factory is high.
aux1_sleep [= <sleeplevel>]: reports or sets the level of the AUX1 signal seen by the external device
while the logger is asleep, either high, low or tristate. In the high and low states the signal is actively
driven to the appropriate level by the logger, which may be necessary for some external devices. The
high and low signal levels are approximately +5V and –5V respectively, compatible with the RS-232
specification. However, these two options cause a large increase in the logger's sleep current, and will
severely impact the available deployment lifetime when using the logger's internal batteries. These
options are not recommended for use unless the logger is run from an external power source for which
a high sleep current does not matter. In the tristate condition, the signal is not actively driven, but
becomes high impedance. This allows the logger to maintain a very low sleep current, but the external
device must be able to enter the appropriate 'off' or 'sleep' state under these conditions. The default
setting as shipped from the factory is tristate.

Examples

>> streamserial
<< streamserial state = off

>> streamserial state = on
<< streamserial state = on

>> streamserial aux1_all
<< streamserial aux1_state = on, aux1_setup = 2000, aux1_hold = 3000, aux1_active = high, aux1_sleep = tristate

>> streamserial aux1_setup = 500
<< streamserial aux1_setup = 500

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not valid or out of place.

Error E0109 feature not available
The logger is not configured to support streaming over the serial link.

RBR#0005199revL - 90

4.5 Deployments

RBR#0005199revL - 91

•

•

•

4.5.1 verify

Usage
>> verify [erasememory = true]

Security
Open.

Description
This command performs all the same deployment consistency checks which the enable command performs. It then
reports the same response which the enable command would produce, whether this is an updated logger status, a
warning or an error message. It does not, however, actually enable the logger for sampling.
In other words, it performs a "dry run" of the enable command to allow the programmed schedule parameters to be
verified.

As with the enable command, it takes the option:

erasememory = true

As with the enable command, it reports two parameters:

status, this is the same status reported by the deployment command, as it would be reported by the
enable.
warning, warning code if any (see description below), none otherwise.

Examples

>> verify
<< verify status = pending, warning = none

The programmed schedule is valid and the logger would, if enabled, begin collecting data at the start time.

>> verify
<< verify status = logging, warning =none

The programmed schedule is valid and the logger would, if enabled, begin collecting data at the next scheduled sample
time.

>> verify
<< E0402 memory not empty, erase first
>> verify erasememory=true
<< verify status = logging, warning = W0401

https://docs.rbr-global.com/display/L3DOC/.deploymdfent+v1

RBR#0005199revL - 92

Memory is not cleared, logging would not be enabled. Except in the case of the erasememory = true option.

Warning messages:
W0401 estimated memory usage exceeds capacity
The schedule is valid, but the memory will fill up before the end time is reached.

W0408 logging already active
The logger was already active.

Errors
Error E0402 memory not empty, erase first
The data memory must be empty. Use either the memclear command or the erasememory parameter of
the enable command to erase data memory.

Error E0403 end time must be after start time
 The end time must be later than the start time.

Error E0404 end time must be after current time
The end time must be later than the logger's current time.

Error E0410 no sampling channels active
All the logger's measured channels have been turned off (in instruments which support this feature); there is nothing to
sample.

Error E0411 period not valid for selected mode
The measurement period is not consistent with other programmed parameters.

Error E0412 burst parameters inconsistent
The programmed burst parameters are not consistent for the selected sample mode.

Error E0413 period too short for serial streaming
Serial streaming may not be available at high sample rates.

Error E0414 thresholding interval not valid
The requested threshold check interval is not consistent with the logger's capabilities or other programmed
parameters.

Error E0415 more than one gating condition is enabled
Gating conditions such as thresholding and twist activation cannot be combined; disable all but one gating condition.

Error E0416 wrong regimes settings
The programmed settings for 'regimes' sampling are not consistent.

Error E0417 no gating allowed with regimes mode
A gating condition cannot be used with the "regimes" sampling mode.

Error E0418 cast detection needs a pressure/depth channel
The cast detection feature cannot be used if the logger has no pressure or depth channel.

Error E0419 calibration coefficients are missing
Valid calibration coefficients for all sampled channels must be present before logging can be enabled.

Error E0420 required channel is turned off; <channel-index>
The indicated channel has been turned off, but it must be enabled in order for a selected feature to work; turn the
channel back on.

Error E0421 raw output format not allowed
Raw streaming output formats are not permitted if the memory storage format is set to EasyParse (calbin00).

RBR#0005199revL - 93

Error E0422 AUX1 not available in current serial mode
The AUX1 signal can be used only in RS-232 mode.

Error E0423 wrong ddsampling settings
The programmed settings for the "ddsampling" sampling mode are not consistent.

Error E0114 feature not supported by hardware
An attempt is being made to enable the logger using a feature it does not support.

RBR#0005199revL - 94

•

•
•

4.5.2 enable

Usage
>> enable [erasememory]

Security
Open.

Description
Enables a logger to sample according to the programmed schedule.
An option is available to erase the memory and enable the logger with a single command, otherwise the memclear
command must be used to erase the memory beforehand if necessary.

erasememory = true, erase the memory

Although the enable command is always available, a number of checks are made before logging is actually enabled. If
any check fails, the logger is not enabled and an error message is sent as described below. The most severe error found
causes immediate failure of the command; a single attempt to enable the logger will not detect multiple errors. If all
required conditions are satisfied, an internal error may still prevent sampling from being enabled when the logger
attempts it. This also will provoke an error message.

If successful, the command reports two parameters:

status, this is the same status reported by the deployment command.
warning, warning code if any (see description below), none otherwise.

Examples

>> enable
<< enable status = pending, warning = none

The programmed schedule is valid and the logger will begin collecting data at the start time.

>> enable
<< enable status = logging, warning = none

The programmed schedule is valid and the logger will begin collecting data at the next scheduled sample time.

>> enable
<< enable status = pending, warning = W0401

The programmed schedule is valid and the logger will begin collecting data at the start time; however, the memory may
fill before the end time.

RBR#0005199revL - 95

Warning messages:

W0401 estimated memory usage exceeds capacity
The schedule is valid, but the memory may fill up before the end time is reached.

W0408 logging already active
The logger was already active.

Errors

Error E0107 expected argument missing
For example, the true argument was not given with the erasememory option.

Error E0108 invalid argument to command: '<invalid-argument>'
An unrecognized argument was given with the command.

Error E0301 memory erase not completed
Memory erase failed (requested with erasememory = true option).

Error E0402 memory not empty, erase first
The data memory must be empty

Error E0403 end time must be after start time
The end time must be later than the start time.

Error E0404 end time must be after current time
The end time must be later than the logger's current time.

Error E0405 failed to enable for logging
An internal problem prevented the logger from enabling the sampling schedule. For further details and suggestions for
recovery, refer to the deployment command.

Error E0410 no sampling channels active
All the logger's measured channels have been turned off (in instruments which support this feature); there is nothing to
sample.

Error E0411 period not valid for selected mode
The measurement period is not consistent with other programmed parameters.

Error E0412 burst parameters inconsistent
The programmed burst parameters are not consistent for the selected sample mode.

RBR#0005199revL - 96

Error E0413 period too short for serial streaming
Serial streaming may not be available at high sample rates.

Error E0414 thresholding interval not valid
The requested threshold check interval is not consistent with the logger's capabilities or other programmed
parameters.

Error E0415 more than one gating condition is enabled
Gating conditions such as thresholding and twist activation can not be used in combination; choose one.

Error E0416 wrong regimes settings
The programmed settings for 'regimes' sampling are not consistent.

Error E0417 no gating allowed with regimes mode
A gating condition can not be used with the 'regimes' sampling mode.

Error E0418 cast detection needs a pressure/depth channel
The cast detection feature can not be used if the logger has no pressure or depth channel.

Error E0419 calibration coefficients are missing
Valid calibration coefficients for all sampled channels must be present before logging can be enabled.

Error E0420 required channel is turned off; <channel-index>
The indicated channel has been turned off, but it must be sampled for a selected feature (eg. thresholding) to work; turn
the channel back on.

Error E0421 raw output format not allowed
Raw streaming output formats are not permitted if the memory storage format is set to EasyParse (calbin00).

Error E0422 AUX1 not available in current serial mode
The AUX1 signal can be used only in RS-232 mode.

Error E0423 wrong ddsampling settings
The programmed settings for 'ddsampling' sampling are not consistent.

Error E0114 feature not supported by hardware
An attempt is being made to enable the logger using a feature it does not support.

RBR#0005199revL - 97

•

4.5.3 disable

Usage
>> disable

Security
Open.

Description
If the instrument is logging, this command will terminate the current deployment. If the instrument was not logging
when the command is issued, its status does not change.
This command reports:

status, the status of the logger is always reported when the command is complete (see deployment
command).

If the disable command is sent while a measurement is in progress, the measurement will be completed before logging
is stopped. Consequently, depending on the channels installed in the logger and the sampling mode, the logger's
response to the command may be delayed. If the logger is sampling in any averaging or burst recording mode, the burst
currently in progress will be interrupted and abandoned.

If the logger is recording data to memory, a 'stop event' will be appended to the data after the last sample stored.

Examples

>> deployment status
<< deployment status = logging
>> disable
<< disable status = stopped

The instrument was logging, and has now been stopped.

>> deployment status
<< deployment status = disabled
>> disable
<< disable status = disabled

The instrument had previously been stopped and its data memory erased; its status has not changed.

RBR#0005199revL - 98

•
a.
b.

•

1.

4.5.4 simulation

Usage
>> simulation [state | period]

Security
Unsafe and protected.

Description
This command allows to enable the simulation mode.

It takes as parameters:

state [= <state>]
on, enables the simulation mode.
off, disables the simulation mode.

period [= <periodinmilliseconds>], period in milliseconds of one full cycle of simulated values.

When state = on, the measured values from selected channels in the logger are replaced by artificially generated
values. These values follow an approximately linear ramp which travels up and down between predefined limits, taking
period = <milliseconds> to complete one full cycle. All simulated channels cycle at the same rate. The channel types
supported and the limits which apply are listed below. If the logger has channels of other types, data for those channels
is replaced by a constant value.

Channel type Minimum Maximum Units

temperature -5 +35 °C
pressure +10 +2000 (1) dbar
conductivity -1 +85 mS / cm
PAR -25 +2500 µmol / m2 / s
turbidity -25 +2500 NTU
chlorophyll -2 +150 µg / L
o2 concentration 0 +450 µM

Notes

If a pressure channel's calibration coefficients indicate that 2000dbar is beyond the measurement
range, a limit corresponding to the sensor's maximum output will be used instead.

The simulated values are used both for scheduled samples stored in memory, and for on-demand samples obtained
using the fetch command. Both types of sample should confirm closely to the same linear ramp; if scheduled and on-

RBR#0005199revL - 99

demand samples are required simultaneously, there may be some small deviations due to the computation's attempts
to satisfy both.

A logger programmed to generate simulated data can be identified in one of two ways: request the setting of the
simulation state, or check the response to the id command for the indicator as shown below.

>> simulation state
<< simulation state = on|off

>> id
<< id mode = SIMULATION, model = RBRconcerto3, version = 1.000, serial = 012345, fwtype
= 104
 (Simulated data is enabled)

>> id
<< id model = RBRconcerto3, version = 1.000, serial = 012345, fwtype = 104
 (Simulated data is disabled)

Examples

>> simulation
<< simulation state = off, period = 600000

>> permit command = simulation
<< permit command = simulation
>> simulation state = on, period = 3600000
<< simulation state = on, period = 3600000

>> permit command = simulation
<< permit command = simulation
>> simulation period = 1200000
<< simulation period = 1200000

Errors
Error E0105 command prohibited while logging
Changes to the state or period parameters can not be made while logging is enabled.

Error E0103 protected command, use 'permit command = <command>'
Changes to the state or period parameters can not be made without issuing the command permit command =
simulation immediately beforehand.

Error E0108 invalid argument to command: '<invalid-argument>'
One of the supplied parameter names or values was not valid.

RBR#0005199revL - 100

4.6 Memory and Data Retrieval

These commands provide information about the memory in which deployment data is stored, permit access to that
data for retrieval, and allow the memory to be cleared.

RBR#0005199revL - 101

•
•
•
•
•

1.
2.
3.
4.

4.6.1 meminfo

Usage
>> meminfo [dataset | used | remaining | capacity | size]

Security
Open.

Description
Reports information about the usage and characteristics of the data memory.

dataset [= <index>] is the index of the dataset being queried - see below for details.
used is the number of bytes actually used to store data in this dataset.
remaining is the number of bytes still available for data storage.
size is the maximum total size in bytes of the dataset.
capacity is the maximum number of bytes which will be stored in data memory if all of the 'remaining'
bytes are fully used. This parameter is not reported by default, but must be requested explicitly.

The dataset argument is present to support the EasyParse data storage format, which assigns different types of
deployment data to different datasets as follows:

 the deployment header is in dataset 2,
the sample data is in dataset 1,
events are in dataset 0, and
the sample data generated by postprocessing is in dataset 4.

In Standard data storage format, everything is in dataset 1. For a full discussion of data storage formats, refer to the
section Format of Stored Data.

If the dataset argument is omitted then dataset 1 is assumed, and no <dataset> value is reported in the command's
response, either: it is assumed that dataset 1 is implicitly understood.

In Standard format, only one dataset is used, and so the remaining parameters have physical interpretations which are
not too hard to understand. The size parameter is a fixed number for a given flash memory device. Because of the way
these devices store data, it is sometimes not possible to use the entire device in order to reliably store small amounts of
information. In such cases small areas of the device are not used to store data, but are no longer available for storage,
either. Over the course of a deployment these uncommitted areas can accumulate, so (used + remaining) < size.
However, (used + remaining) = capacity should always be true.

In EasyParse format, the relationship between the parameter values and the characteristics of the physical storage
device become more complicated. For the curious, this is discussed in detail in the "Technical note" below, but this
should not be considered required reading. Although the numbers will not be completely accurate, a reasonable guide
to the state of the memory can be obtained by looking at the values for dataset 1 alone, since it contains the sample
data, and there will typically be far more sample data than anything else.

RBR#0005199revL - 102

Examples

>> meminfo
<< meminfo used = 1528, remaining = 134216192, size = 134217728

>> meminfo capacity
<< meminfo capacity = 134217720

>> meminfo dataset = 1
<< meminfo dataset = 1, used = 1528, remaining = 134216192, size = 134217728

>> meminfo dataset = 0, used
<< meminfo dataset = 0, used = 362

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not recognized.

Technical note
This note discusses the relationships between the parameter values
for used, remaining, size and capacity when more than one dataset in the memory is in use; for example,
when using the EasyParse data storage format.
To understand this, the concept of memory 'blocks' must be introduced. A block is the smallest amount of
memory in the physical device which can be erased, and is relatively large; a typical size might be 128KB.
All datasets start off empty, and all blocks are initially available to any dataset. As soon as a dataset is written
to, the modified block is assigned to that dataset. The memory within it is available to that dataset, but to no
others, so for all the other datasets, the size of the memory appears to shrink by one block. If this strategy were
not followed, datasets could not be erased independently of each other.
Therefore, as multiple datasets are opened and written to, each can report a different size for the memory,
because as far as each dataset is concerned any blocks assigned to other datasets do not exist. Further, as
blocks are assigned to each dataset, the size according to other datasets appears to change.
In fact, then, size is the maximum possible amount of memory which could be used by the specified (or
default) dataset, not the entire physical device. It is reported in bytes, but will always be a multiple of the block
size. If only one dataset exists, then size does also give the physical device size, because no other datasets will
use any blocks.
Mercifully, used is a bit simpler to understand; it is just the number of bytes which have actually had data
written to them in the specified dataset.
The value of remaining is the maximum possible number of bytes which could be written to this dataset in the
future. It includes all bytes in unallocated blocks, as well as all available bytes in any partially used block
assigned to this dataset.
Finally, capacity is the maximum possible number of bytes of data that the specified dataset could end up
holding if all remaining bytes get used: in other words, (used + remaining). In general, capacity may be less



RBR#0005199revL - 103

than size for any data set, but never more. The reason for this is that sometimes a 'partial page' of data may be
flushed from a RAM cache to the actual flash device before the cache is full. When this happens, the unused
bytes in that page have no data in them, but they are no longer available for storage either; they are 'lost'. The
accumulation of such lost bytes is the difference between capacity and size.

RBR#0005199revL - 104

4.6.2 memclear

Usage
>> memclear

Security
Unsafe and protected.

Description
Clears the data storage area of the flash memory. Currently, all datasets are erased, regardless of the data storage
format in use.

The logger responds by reporting that the memory used is zero if successful, as shown in the Example below; an error
message is sent if the operation fails.

Examples

>> permit command = memclear
<< permit command = memclear
>> memclear
<< memclear used = 0

Errors
Error E0103 protected command, use 'permit command = <command>'
permit command = memclear must immediately precede the command to clear the memory.

Error E0301 memory erase not completed
The memory failed to erase; if repeated attempts are not successful, please contact RBR Ltd for assistance.

RBR#0005199revL - 105

•

•

a.
b.

•

4.6.3 memformat

Usage
>> memformat [type | newtype | availabletypes]

Security
Unsafe.

Description
This command reports or sets the format used to store deployment data in memory. The available parameters and their
usage are described below.

type requests the format of the data presently stored in memory, either for a deployment in progress
or for one which has finished. If the memory is completely empty because it has been cleared, the
response will be none.

newtype [= <type>] requests or sets the format of the data which will be used during a future
deployment; the value can not be modified while logging is in progress.

rawbin00
calbin00

availabletypes requests a list of the data storage formats available for this logger.

If no argument is given to the command, all arguments are reported. Currently supported types are as follows:

rawbin00
This is the 'Standard' format which contains all sample data and supplementary data in a single data set in binary form.

calbin00
This is the 'EasyParse' format, for which the sample data is stored in its own data set in a uniform and consistent format
which is simpler to decode.

 For a full discussion of the data storage formats available, refer to the section Format of Stored Data.

Examples

>> memformat availabletypes
<< memformat availabletypes = rawbin00|calbin00

>> memformat
<< memformat type = rawbin00, newtype = rawbin00, availabletypes = rawbin00|calbin00

RBR#0005199revL - 106

>> permit command = memclear
<< permit command = memclear
>> memclear
<< memclear used = 0

>> memformat type
<< memformat type = none

>> memformat newtype = calbin00
<< memformat newtype = calbin00

>> memformat type
<< memformat type = none

Errors
Error E0105 command prohibited while logging
The data storage format may not be modified while logging is in progress; reading is permitted.

Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not recognized.

RBR#0005199revL - 107

1.
2.

3.

1.

2.

1.
2.
3.

4.6.4 readdata

Usage
>> readdata [dataset | size | offset]

Security
Open.

Description
This command allows to read data from the datasets.

dataset [= <index>], <index> is the dataset index to be read.
size [= <value>], <value> is the amount of data to be read, if not set, readdata will use the last size
used.
offset [= <value>], <value> is the dataset index to be read, if not set, readdata will use the offset
corresponding the offset of the last byte read +1.

The command replies as any other command by confirming the key values pairs dataset, size and offset effectively
reported followed by a <CR><LF>. Then send a binary stream composed of:

<data> is the actual binary data, delimited at the start by the <CR><LF> and bounded in length by size
parameter returned.
<crc> is a 16-bit CRC using the CCITT polynomial f(x) = x^16 + x^12 + x^5 + 1, feeding bytes into the
generator LSB first and using 0xFFFF as a seed value. If the bytes of the computed <crc> are swapped
and appended to the data, the host can include them in its CRC-check as an extra two bytes: if the CRC
is correct, this always gives a result of zero.

No acknowledge mechanism is implemented; failed transfers can simply be requested again.

For the Standard data storage format, the dataset number is always 1; all deployment information is stored in a single
dataset.
For the EasyParse format, the three major components of deployment data are each assigned a dataset as follows:

the deployment header is in dataset 2,
the sample data is in dataset 1, and
events are in dataset 0.

The readdata command knows nothing of the structure of the retrieved data in any of these cases, it is simply
transferring a block of bytes of unknown content.
Internally, requests for very large amounts of data in a single instance of the readdata command are broken down into
smaller blocks. Such a transfer could take a considerable time, and if necessary it may be aborted by sending the
pseudo-command abort, followed by a <cr> character. The transfer then stops at the next internal block boundary, and
terminates with the message operation aborted.

RBR#0005199revL - 108

•

•

Examples

>> readdata dataset = 1, size = 1000, offset=0
<< readdata dataset = 1, size = 1000, offset = 0<cr><lf><bytes[0..999]-of-data><crc>

>> readdata dataset = 1, size = 1000, offset = 1000
<< readdata dataset = 1, size = 1000, offset = 1000<cr><lf><bytes[1000..1999]-of-data><crc>

>> readdata dataset = 1, size = 1000, offset = 2000
<< readdata dataset = 1, size = 12, offset = 2000<cr><lf><bytes[2000..2011]-of-data><crc>

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not recognized.

4.6.5 postprocessing

Usage
>> postprocessing [channels | mode | status | command | dc_alpha | dc_tau | dc_tdelay | dc_ctcoeff]

Security
None.

Description
The postprocessing feature enables the logger to perform various post-processing operations on data measured and
stored by the logger. It operates on data stored in EasyParse format in dataset-1 and writes EasyParse format into
dataset-4 based on the channels and parameters requested. The postprocessing can occur as soon as there is an
EasyParse dataset available (even if logging is in progress). If the instrument is powered cycle while performing the
postprocessing, it will continue the postprocessing after power cycling.

channels [= listofchannelsstats] is the list of channels statistics to be obtained. Items in the list are
separated by the character | and follow the
format <aggregatefunction>(<channel>), where<channel>is a channel label
and<aggregatefunction>is either:

mean, average value in the bin

This feature was introduced in firmware version 1.136. Firmwares between 1.102 and 1.135 carry a different
implementation of the postprocessing command.



https://docs.rbr-global.com/display/L3DOC/.Sample+data+EasyParse+format+vD
https://docs.rbr-global.com/display/L3DOC/.Sample+data+EasyParse+format+vD

RBR#0005199revL - 109

•
•

•
•

•

•

•

•

•

•

•
•
•

std, standard deviation of the bin
count, number of samples in the bin

A maximum of 24 channels is supported. The generated dataset-4 channels order will follow the same
order as <listofchannelsstats>.
mode [= continous|regimes] Select the mode of operation for the postprocessing.

When the mode is regimes, it indicates the postprocessing will use settings from
postprocessing_regime and postprocessing_regimes commands to process the data.
Behavior mimics the real-time regime/regimes command.
When the mode is continuous, all the data is processed without performing any binning. This is
used for performing dynamic correction while maintaining the same sampling rate

status is a read-only parameter that returns the current state of the finite state machine for the
instrument's post-processing function. Possible statuses are:

disabled, indicating that the postprocessing is waiting to be enabled. Data stored in the
postprocessing dataset (if any) corresponds to the previous postprocessing parameters.
processing, indicating that a postprocessing job is ongoing. Data stored in the postprocessing
dataset corresponds to the current postprocessing configuration but might be incomplete.
finished, indicating that a postprocessing job has been completed. Data stored in the
postprocessing dataset corresponds to the current postprocessing parameters.

command = <command> is a write-only parameter that controls the execution of the postprocessing
job. The status parameter is reported upon issuing a command. <command> can be one of:

enable starts the post-processing job (only if the status is disabled)
stop stops the post-processing job (indicate completion)
reset return back to the disabled state (doesn't clear the dataset)

The command reset will not discard the dataset. However, if the memory is cleared (either via memclear or via enable
erasememory = true), dataset-4 will be discarded once the memory is erased: the dataset is always associated with the
relevant dataset-1. Changing postprocessing parameters is not allowed while status is processing or finished. In order
to change any parameters, a reset needs to be issued to go back to the disabled status.

The finished status indicates previously processed data and current postprocessing parameters are the ones
used to process the dataset.



RBR#0005199revL - 110

•
•

•

•

dc_tau [= <value>] is the C-T lag for dynamic correction of the salinity.
dc_alpha[= <value>] is the magnitude of short-term thermal mass correction for dynamic correction
of the salinity.
dc_tdelay[= <value>] is a dynamic correction parameter for the time lag correction (in seconds)
between marine temperature and conductivity cell temperature
dc_ctcoeff[= <value>] is the magnitude of long-term thermal mass correction for dynamic correction
of the salinity.

Examples

>> postprocessing
<< postprocessing status = finished, mode = continuous, channels = mean(conductivity_00)|
mean(temperature_00)|mean(pressure_00)|mean(salinity_00_dyn_corr)|mean(temperature_00_dyn_corr)
>> postprocessing all

•
•

postprocessing allows calculating dynamic correction for salinity and marine temperature channels on RBRargo
C.T.D. A special suffix (_dyn_corr) is added to the channels label to expose their dynamically corrected version:

salinity_00_dyn_corr
temperature_00_dyn_corr

This method is not recommended anymore as the algorithm used assumes a constant ascent rate and firmware
1.145 provides a salinity channel with dynamic correction applied based on the instantaneous ascent speed.



RBR#0005199revL - 111

<< postprocessing status = finished, mode = continuous, channels = mean(conductivity_00)|
mean(temperature_00)|mean(pressure_00)|mean(salinity_00_dyn_corr)|mean(temperature_00_dyn_corr),
dc_alpha = 0.1300, dc_tau = 5.9000, dc_tdelay = 0.3500, dc_ctcoeff = 1.0200e-00

>> postprocessing status
<< postprocessing status = disabled
>> postprocessing command = enable
<< postprocessing status = processing
...[postprocessing active] ...
>> postprocessing status
<< postprocessing status = finished

>> postprocessing dc_tau = 7.00
<< postprocessing dc_tau = 7.00
>> postprocessing dc_alpha
<< postprocessing dc_alpha = 0.08

Errors
Error E0108 invalid argument to command
The command was given with an argument which is unrecognized or has an invalid value; for example

Error E0425 invalid settings
Post-processing can not start because some settings are inconsistent or invalid.

Error E0426 postprocessing already active
Parameters cannot be changed while the post-processing status is not idle.

Error E0427 wrong memory format
The current dataset is not stored using the calbin00 memory format.

Error E0428 postprocessing reference channel not available
One of the supporting channels required is not available in the current dataset.

RBR#0005199revL - 112

•
a.
b.

•

•
a.

b.

4.6.6 postprocessing_regimes

Usage
>> postprocessing_regimes [direction | count | reference]

Security
None.

Description
Sets and returns regimes parameters for use with postprocessing command. These are only used if the regimes
postprocessing mode is in use. This is intended for use when the instrument is integrated into moving platforms.

Changing postprocessing_regimes parameters is not allowed while postprocessing status is processing or finished.

direction [= <direction>]
ascending indicates that the instrument is intended to ascend in the water column.
descending indicates that the instrument is intended to descend in the water column.

count [= <countvalue>] indicates the number of regimes that are set. The minimum number is 1 and
the maximum number of regimes is 3.
reference [= <reference>]

absolute indicates that the absolute pressure is used as reference for the determination of the
current regime and bin.
seapressure indicates that the sea pressure is used as reference for the determination of the
current regime and bin.

Examples

>> postprocessing_regimes
<< postprocessing_regimes direction = descending, count = 3, reference = absolute
>> postprocessing_regimes direction = ascending
<< postprocessing_regimes direction = ascending

Errors
Error E0108 invalid argument to command
The command was given with an argument which is unrecognized or has an invalid value; for example

Error E0426 postprocessing already active
Parameters cannot be changed while the post-processing status is not idle.

RBR#0005199revL - 113

•

•

4.6.7 postprocessing_regime

Usage
>> postprocessing_regime <index> [boundary | binsize]

Security
None.

Description
Returns information about the specified <index> regime for postprocessing. The first regime has an <index> of 1.
<index> should be lower or equal to the number of regimes reported by the postprocessing_regimes command at the
time of issuing the command. If the direction (postprocessing_regimes command) is set to descending, the first
regime corresponds to the regime the closest to the surface. If the direction is set to ascending, the first regime is the
closest to the seabed. Depending on how is set the reference (postprocessing_regimes command), the logger use the
absolute pressure or the sea pressure to determine the current regime and the current bin.

Changing postprocessing_regime parameters is not allowed while postprocessing status is processing or finished.

The following parameters give the basic information available for all regimes.

boundary [= <firstboundaryvalue>] specifies the transition from one regime to the next, and is
interpreted as the first boundary in a region (lower bound if ascending, upper bound if descending).
The units are in dbar. The minimum precision is 1 dbar, and the value should be between 0 dbar and
65535 dbar
binsize [= <countvalue>] specifies the size (in dbar) used for each averaged bin. The minimum
precision is 0.1dbar, and the value should be between 0.1 dbar and 6553.5 dbar.

Examples

>> postprocessing_regimes
<< postprocessing_regimes direction = descending, count = 3, reference = absolute
>> postprocessing_regime 1
<< postprocessing_regime 1 boundary = 2000, binsize = 100.0
>> postprocessing_regime 2
<< postprocessing_regime 2 boundary = 4000, binsize = 10.0
>> postprocessing_regime 3
<< postprocessing_regime 3 boundary = 5000, binsize = 20.0

Errors
Error E0108 invalid argument to command
The command was given with an argument which is unrecognized or has an invalid value; for example

RBR#0005199revL - 114

Error E0426 postprocessing already active
Parameters cannot be changed while the post-processing status is not idle.

RBR#0005199revL - 115

RBR#0005199revL - 116

4.7 Configuration Information and Calibration

RBR#0005199revL - 117

•

•

•

•

•

4.7.1 channels

Usage
>> channels [count | on | settlingtime | readtime | minperiod]

Security
Open.

Description
A read-only command which returns general channel information for the logger.

count is simply the number of channels installed and configured in the logger.

on gives the number of active channels, which excludes any channels turned off by the user: see
the status argument to the channel command.

settlingtime is the power-on settling delay in milliseconds; this is the time the logger will wait after
waking from its quiescent state, before attempting to take measurements. It allows all sensors and
channel electronics to reach a stable condition. This overall settling time is determined by the longest
of all the individual active channel delays; channels which are turned off do not contribute.

readtime is the overall reading time in milliseconds; this is the additional time the logger needs to
acquire data from all active channels once the settling time has passed. This overall readtime is
determined by the longest value of all the individual active channels; any which are turned off do not
contribute.

Most channels have a fixed, pre-determined readtime, but for some it may be variable. An example
would be a channel which supports, and is configured to use, the auto-ranging feature: the readtime is
longer when the channel is in auto-ranging mode than when operated in a fixed-gain mode. The
logger adjusts the reported value of the readtime to reflect the operating mode and status of all active
channels.

minperiod is the minimum sampling period in milliseconds with the currently active channels. This
takes account of the current overall values for the settling and read times, and adds some overhead
and safety margin for both fixed and per-channel activities. The value applies to the "normal"
sampling mode supported by all loggers; loggers configured to support fast sampling modes as well
may use selected periods less than this value.

RBR#0005199revL - 118

Examples

>> channels
<< channels count = 2, on = 2, settlingtime = 160, readtime = 150, minperiod = 1000

>> channels settlingtime, readtime
<< channels settlingtime = 160, readtime = 150

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
An unrecognized argument was given with the command.

Error E0505 no channels configured
Indicates a serious fault with the logger; please contact RBR Ltd for help.

RBR#0005199revL - 119

•
a.
b.
c.

•

•

a.

b.

•

•

4.7.2 channel

Usage
>> channel <indexorlabel> [type | module | status | settlingtime | readtime | equation | userunits | gain |
availablegains | derived | label | index]

Security
Unsafe.

Description
Returns information about the channel at the specified <indexorlabel>. Channels can be identified either by an index (an
integer) or by their label (a meaningful string, for example temperature_00 or conductivity_00). The first channel has an
index of 1.

A special value of allindices or alllabels may be given for <indexorlabel> causing the requested parameters to be
reported for all channels. The output for each channel is terminated by ||, except for the last channel which is
terminated by a <cr><lf> pair as normal.

The following parameters give the basic information available for all channels. None of these values may be modified by
end users. All parameters might be obtained using the all in lieu of parameter names.

type is a short, pre-defined 'generic' name for the installed channel; for example:
temp09 RBRduo³ temperature,
pres19 RBRduo³ pressure,
cond05 RBRconcerto³ marine conductivity,
and so on. RBR Ltd continually adds support for more sensor types and variants; the Section
Supported Channel Types contains a complete listing of channel types available at the time of
writing this document.

module is the internal address to which this channel responds; it is normally of no interest to end
users.

status [= <status>] is a further basic parameter which applies to all channels. It is modifiable by end
users, and allows any individual channel to be turned off or on for the duration of a deployment.

on: the channel is activated for sampling; its data will be stored in memory if appropriate, and
its value will appear in streamed output if streaming is enabled. However, note that if data
storage is set to Standard format (rawbin00), data is never stored for derived channels, because
raw data for such channels does not exist.
off: the channel is not sampled, no data will be stored in memory or streamed for this channel.

settlingtime is the minimum power-on settling delay in milliseconds required by this channel, taking
into account both the sensor and the interface electronics.

readtime is the typical data acquisition time in milliseconds required by this channel, again taking
into account both the sensor and the interface electronics.

RBR#0005199revL - 120

•

a.
b.
c.
d.

•

•

•

•

Most channels have a fixed, pre-determined readtime, but for some it may be variable. An example
would be a channel which supports, and is configured to use, the auto-ranging feature: the readtime is
longer when the channel is in auto-ranging mode than when operated in a fixed-gain mode. The
logger adjusts the reported value of the readtime to reflect the operating mode and status of the
channel.

equation is the type of formula used to convert raw data readings to physical measurement units. The
values for the core equations are shown below as examples; see the section Calibration Equations
and Cross-channel Dependencies for details of all supported equations.

tmp temperature
lin linear
qad quadratic polynomial
cub cubic polynomial

userunits is a short text string giving the units in which processed data is normally reported from the
logger; for example C for Celsius, V for Volts, dbar for decibars, etc. Presently this is a factory-set field
representing the fundamental units in which the channel is calibrated; support for user-selectable
units is planned in the future.

derived is a flag which is either on or off to indicate whether the channel is a derived channel (on) or a
measured channel (off). This is an intrinsic property of the channel type, and can not be modified: it is
for information only.

gain reports the gain setting currently in use by the channel referenced by <indexorlabel>. In addition
to one of the fixed values from the list reported by the availablegains option, the response may
indicate auto for auto-ranging. In this mode the channel will select the most appropriate gain setting
depending on the value of the parameter being measured. Again, if the channel does not support
multiple gain settings, the response is none.

The gain option may also be used to set the gain used. For a fixed gain setting, the value supplied
must be from the list reported by the availablegains option. For auto-ranging, use the
word auto. Although they are typically whole numbers, gains are reported in a floating point format,
and may be specified as such, as long as the value appears in the list of available gains.

availablegains reports the gain settings supported by the sensor at channel <indexorlabel>. The
settings are given as a list of numerical values in order of increasing gain, with a vertical bar character '
|' separating the values. If the channel at <indexorlabel> does not support multiple gain settings, the
response is none.

The availablegains and gain parameters are only available for channel types which support sensors having
variable gain, or multiple ranges. Presently these include sensors from Seapoint, and the Cyclops series from
Turner Designs, which can measure turbidity, fluorescence, and various other optical properties. For a
complete list refer to the Section Supported Channel Types.



RBR#0005199revL - 121

•

•

label is a short text string without white spaces,comma, equal symbol or special character, describing
the physical parameter measured (example: temperature_00). It is reported when the channel
requested is referred by its index.

index is the index of the channel. It is reported when the channel requested is referred by its label.

Examples

>> channel 1
<< channel 1 type = temp09, module = 6, status = on, settlingtime = 50, readtime = 260, equation = tmp, userunits =
C, derived = off, label = temperature_00

>> channel 2 equation userunits
<< channel 2 equation = cub, userunits = dbar

>> channel allindices type
<< channel 1 type = temp09 || channel 2 type = pres19
>> channel alllabels type
<< channel temperature_00 type = temp09 || channel pressure_00 type = pres19

>> channel 4 availablegains
<< channel 4 availablegains = 1.0|5.0|20.0|100.0

>> channel 4 gain
<< channel 4 gain = auto

>> channel 4 gain = 20
<< channel 4 gain = 20.0

>> channel 1 all
<< channel 1 type = temp14, module = 1, status = on, settlingtime = 50, readtime = 260, equation = tmp, userunits =
C, gain = none, availablegains = none, derived = off, label = temperature_00

RBR#0005199revL - 122

1.

2.

1.
2.
3.

Errors
Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

Error E0107 expected argument missing
An argument expected by the logger was not given with the command; for example, there must always be an
<indexorlabel> argument.

Error E0108 invalid argument to command: '<invalid-argument>'
This error will occur if the <index> is out of range, or if an unknown parameter is requested. Logger channels are
numbered from 1 to N; zero is not valid.

Error E0111 command failed
There was a problem reading or modifying some configuration data for the specified channel; typically in response to
accessing gain control information for those channels which support it. Please contact RBR Ltd for help.

Error E0505 no channels configured
 There was a problem reading or modifying some configuration data for the specified channel; typically in response to
accessing gain control information for those channels which support it. Please contact RBR Ltd for help.

Error E0501 item is not configured
There is a problem with the configuration of the specified channel; please contact RBR Ltd for help.

Further status parameter details

Example use-cases

1. RBRconcerto³ C.T.D; realtime output data (streamed or fetched) is required to show only salinity, temperature and
pressure

Ensure the derived salinity channel is on.

Turn off any other derived channels which are available but not required (eg. depth, sea pressure,
etc).
Turn off the Conductivity channel (!!).

The logger knows it requires conductivity to compute salinity, and will still sample this 'off' channel, but will not report
or store (see Note) the data.

2: RBRconcerto³ C.T.D; realtime output data (streamed or fetched) is required to show only depth

Ensure the derived depth channel is on.

Turn off any other derived channels which are available but not required.
Turn off the Conductivity and Temperature channels.
Turn off the Pressure channel (!!).

The logger knows it requires pressure to compute depth, and it also knows that temperature is required for the
correction of pressure, so it will still sample both of these "off" channels, but will not report or store (see Note) the data.
Conductivity is not needed, so this channel will be truly "off".

RBR#0005199revL - 123

1.
2.
3.

4.

1.
2.

Storage implications

For storage of data in standard format (rawbin00):

Only raw, uncorrected, measured channels are stored.
Corrected or derived channels are never stored.
A raw, uncorrected, measured channel will not be stored if the channel has been turned off, and no
other channel depends on its data for correction.
A raw, uncorrected, measured channel which has been turned off will still be stored if any other
channel depends on its data for correction.

For storage of data in EasyParse format (calbin00):

All channels which are on are stored, including any derived channels.
No channel which is off is ever stored, even if another channel depends on its data for correction. The
value of the dependent channel is already computed and stored, so there is no need to also store the
supporting channel unless it is on.

RBR#0005199revL - 124

•

•

•

•

•

4.7.3 settings

Usage
>> settings [fetchpoweroffdelay | sensorpoweralwayson | castdetection | inputtimeout | speccondtempco |
altitude | temperature | pressure | atmosphere | density | salinity | avgsoundspeed]

Security
Unsafe.

Description
Reports or sets the values of miscellaneous settings in the logger as described below.

fetchpoweroffdelay [= <timeoutinmilliseconds>] is the delay in milliseconds between successful
completion of a fetch command, and power to the front end sensors being removed by the logger.
Power is left on for a short time to avoid excessive power cycling when sending
repeated fetch commands; this parameter allows that delay to be adjusted. The default value is 8000.

sensorpoweralwayson [= <state>] is a flag which is either on or off. When on, the logger does not
remove power from the front end sensors between samples. This can be useful for sensors with very
long power-on stabilization times. The default setting is off.

castdetection [= <state>] is a flag which is either on or off. When on, the logger will detect
automatically upcasts and downcasts, and will generate cast detection events in the datastream. It is
advisable to ensure this option is off if the logger is not used as a profiler. The default setting is off.

inputtimeout [= <timeoutinmilliseconds>] specifies the value of a timeout used by the logger when
receiving command input; it is used to temporarily blank other output such as streamed data, and to
assist in power saving by turning off the serial communication interface if it is not needed. See the
section Timeouts, Output Blanking and Power Saving for more details. The value is specified in
milliseconds; the default value for all instruments is 10000 (10 seconds). The value may be set within
the range 10000 (10 seconds) to 240000 (4 minutes) inclusive; partial seconds are rounded up to the
next whole second value. Instead of a numeric value, the word default may be used to restore
the.default value of 10000.

speccondtempco [= <value>] is the temperature coefficient used to correct the derived channel for
specific conductivity to 25°C. Its value depends on the ionic composition of the water being
monitored, and should be set to an appropriate value for best results. A typical range of values is
0.0191 to 0.0214, with the lower end suitable for KCl solutions and the upper end for NaCl solutions.
When specifying a value, any simple numeric format compatible with floating point representation
may be used; for example 0.02, 0.0200, or 2e-2 would all be accepted. If the parameter is never

RBR#0005199revL - 125

•

•

a.
b.
c.
d.
e.
f.

explicitly set, the default value is 0.0191, suitable for standard KCl solution.

altitude [= <value>] is the height above the seabed in metres at which the logger is deployed. This is a
user-entered parameter which is required by host software to calculate statistics and parameters for
wave analysis: it is not used internally by the logger, and if wave analysis is not required the parameter
can be ignored.

temperature, pressure, atmosphere, density, salinity, avgsoundspeed [= <value>]: these are
default parameter values, to be used when the logger does not have a channel which measures the
named parameter, but one or more cross-channel calibration equations requires it as an input.
When specifying a value, any simple numeric format compatible with floating point representation
may be used; for example 11, 11.000 or 1.10e+1 would all be accepted. The units of these parameter
values are implicit, and must be as shown below. If these parameter values are never explicitly set,
they will have default values based on standard sea water (salinity = 35PSU, temperature = 15°C,
hydrostatic pressure = 0 dbar), and one standard atmosphere for atmospheric pressure.

temperature in °C, default value 15.0
absolute pressure in dbar, default value 10.132501 (1 standard atmosphere)
atmospheric pressure in dbar, default value 10.132501
water density in g/cm3, default value 1.026021
salinity in PSU, default value 35
avgsoundspeed in m/s, default value 1506.8

Examples

>> settings atmosphere
<< settings atmosphere = 10.132501

>> settings density = 1.0295
<< settings density = 1.0295

>> settings sensorpoweralwayson
<< settings sensorpoweralwayson = off

>> settings castdetection
<< settings castdetection = off

RBR#0005199revL - 126

Errors
Error E0105 command prohibited while logging
Parameters may not be modified while logging is in progress.

Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not valid; examples include: invalid parameter name and improperly specified value.

RBR#0005199revL - 127

1.
2.

3.

1.

2.

4.7.4 calibration

Usage
>> calibration <indexorlabel> [datetime | c0 | ... | cn | x0 | ... | xn | n0 | ... | xn]

Security
Unsafe and protected.

Description
Reports or sets information regarding the most recent calibration for the channel specified by <indexorlabel>, which is a
required parameter in all cases (see channel). The number and types of coefficients reported, or required when setting,
will vary depending on the channel type (see channel).

A special value of allindices or alllabels may be given for <indexorlabel> causing the requested parameters to be
reported for all channels. The output for each channel is terminated by ||, except for the last channel which is
terminated by a <cr><lf> pair as normal.

Some sensor types have complicated equations with many coefficients, and the equation may also use the output of
one or more of the other channels in the logger for correction or compensation purposes. This is a powerful facility, but
requires a lot of information; the calibration command helps to manage that information.
Coefficients are arranged in three groups, c0…, x0…, and there is a further group n0… of cross-channel reference
indices. The purpose and function of each group will be described below. The groups may also be referred to by
name; c, x or n.
All parameters might be obtained using the all keyword in lieu of parameter names. Parameters may also be requested
individually, or in any combination, by name. Coefficients in each group may be requested all together by using one of
the group names, c, x or n. Requesting an item which does not exist (eg. c3 for a linear sensor) may result in either an
error message, or a response such as c3 = n/a.

When setting parameters, there are further restrictions which must be followed:

Some parameters are read only; n0… .
datetime = <YYYYMMDDhhmmss> must accompany any changes to coefficient values, so that the
reported date and time reflects the most recent change.
a single calibration command can set coefficient values in only one of the groups at a
time; c0…, x0…, Coefficients from different groups can not be mixed in a single command when
setting.

Descriptions of the individual parameters are given below.

datetime is reported and set using a <YYYYMMDDhhmmss> format. It is the date and time of the most
recent calibration change for the channel, and is a required parameter when setting any of the
calibration coefficients.
c0, c1… are the primary coefficient values, reported as floating point numbers using a format with a
mantissa and exponent; for example 3.3910000e+003. When setting coefficients, any simple format
compatible with floating point representation may be used; for example 11, 11.000 or 1.10e+1 would
all be accepted.
These coefficients apply to a 'core' equation which yields a basic value for the parameter. In many

RBR#0005199revL - 128

3.

4.

cases this is all that is needed, and the x and n groups are not required. The exact function of each
coefficient depends on the equation used.
x0, x1… are required and reported for only some equation types, namely those which employ cross-
channel compensation or correction of the primary value using one or more inputs from other
channels in the logger. x0, x1… are also coefficient values which follow the same rules as the c group.
The exact function of each coefficient depends on the equation used.
n0, n1… apply only to some equation types, those using cross-channel compensation or correction.
They are only ever reported; they are set at the factory and can not be changed. They are not
coefficients, but (in general) the indices of other logger channels whose data are also inputs to the
equation for channel <index>. This permits output data to depend on more than one channel; for
example, to be corrected for temperature dependencies. The values of n0, n1, etc. are simple integer
numbers, remembering that the index of the first channel is 1; zero is not valid.

Equations which use the x0, x1… coefficients will require at least one 'n' index. The logger may also have 'derived
parameter' channels, which have no measurement channel of their own, but an output value which is computed from
other measured channels: a good example would be salinity, which is a function of conductivity, temperature and
pressure. In such cases n0, n1, n2 are required to tell the logger which input channels to use.

There is one special case when the value of an 'n' index may be the text field "value". This can be set only at the factory,
and applies when an equation requires a correction term using a parameter which the logger does not measure. In this
case the default parameter set by the command settings will be used.

Please refer to the section Calibration Equations and Cross-channel Dependencies for a complete list of the
equations which the logger uses, and for further discussion of cross channel dependencies,.

Examples

>> calibration 1
<< calibration 1 label = voltage_01, datetime = 20171218175005, c0 = 9.9876543e+000, c1 = 7.5642301e+000

>> calibration voltage_01
<< calibration voltage_01 index = 1, datetime = 20171218175005, c0 = 9.9876543e+000, c1 = 7.5642301e+000

Querying the calibration for a single channel by index and by label.

>> calibration allindices
<< calibration 1 label = voltage_01, datetime = 20171203134201, c0 = 9.9873456e+000, c1 = 7.5640000e+000 ||
calibration 2 label = voltage_02, datetime = 20171203134201, c0 = 9.9873456e+000, c1 = 7.5640000e+000

>> calibration alllabels
<< calibration voltage_01 index = 1, datetime = 20171203134201, c0 = 9.9873456e+000, c1 = 7.5640000e+000 ||
calibration voltage_02 index = 2, datetime = 20171203134201, c0 = 9.9873456e+000, c1 = 7.5640000e+000

Querying the calibration for all channels by indices and by labels.

RBR#0005199revL - 129

•

•
•
•

>> permit command = calibration
<< permit command = calibration
>> calibration 1 datetime = 20171203134201, c0 = 9.9873456, c1 = 7.564
<< calibration 1 datetime = 20171203134201, c0 = 9.9873456e+000, c1 = 7.5640000e+000

Setting the calibration for a channel.

Errors
Error E0103 protected command, use 'permit command = <command>'
permit command = calibration must immediately precede the command if setting coefficients.

Error E0105 command prohibited while logging
Coefficients may not be modified while logging is in progress.

Error E0107 expected argument missing
An argument expected by the logger was not given with the command; for example, there must always be an <index>
argument, and if setting coefficients then all fields required must be supplied.

Error E0108 invalid argument to command: '<invalid-argument>'

The supplied argument was not valid; examples include:

<index|label> out of range; channels are numbered from 1 to N; zero is not valid, or no channel exists
with this label.
improperly formatted or invalid <datetime> argument.
invalid coefficient name.
improperly specified value for a coefficient.

Error E0501 item is not configured
There is a problem with the configuration of the specified channel; please contact RBR Ltd for help.

Error E0505 no channels configured
Indicates a serious fault with the logger; please contact RBR Ltd for help.

RBR#0005199revL - 130

4.7.5 sensor

Usage
>> sensor <indexorlabel> [param1 | ... | paramn]

Security
Unsafe.

Description
Returns information about the sensor attached to the channel at the specified <indexorlabel> (see channel)

A special value of allindices or alllabels may be given for <indexorlabel> causing the requested parameters to be
reported for all channels. The output for each channel is terminated by ||, except for the last channel which is
terminated by a <cr><lf> pair as normal.
All parameters might be obtained using the all keyword in lieu of parameter names but this one is optional.

The purpose of this command is to manage miscellaneous information relating to the sensor associated with a given
logger channel, as opposed to any property of the channel itself; the distinction is rather fine. In general the sensor
command is used for information which belongs with a particular sensor, but which the logger does not need to know; a
good example would be the sensor's serial number. For information common to all sensors of this type which the logger
does need to know, the channel command is used; a good example would be the settlingtime, or power-on settling
delay.

In principle any channel type could make use of the sensor command; in practice the channels which use it and the
parameters which are supported are defined by the instrument's Factory configuration. End users may change the
values of existing parameters, but they can not add new parameters or add the capability to channels which do not
already have it. Attempting to use the sensor command with a channel not configured to support it will provoke an
error message, as detailed below.

Examples

>> sensor 3
<< sensor 3 serial = 129837

Retrieve all information pertaining to channel 3. In this example, only the "serial" parameter is available.

>> sensor 3 serial
<< sensor 3 serial = 129837

Request a specific parameter.

RBR#0005199revL - 131

>> sensor 3 serial = 119945
<< sensor 3 serial = 119945

Change the value of a parameter.

>> sensor 4
<< sensor 4

No sensor information is available for channel 4.

>> sensor 4 serial
<< sensor 4 serial = n/a

The "serial" parameter is unavailable for channel 4.

>> sensor allindices serial
<< sensor 1 serial = n/a || sensor 2 serial = n/a || sensor 3 serial = 129837 || sensor 4 serial = n/a

Errors
Error E0105 command prohibited while logging
Parameters may not be modified while logging is in progress; reading them is permitted.

Error E0107 expected argument missing
An argument expected by the logger was not given with the command; for example, there must always be an <index>
argument.

Error E0108 invalid argument to command: '<invalid-argument>'
This error will occur if the <index> is out of range, or if an unknown parameter is requested. Logger channels are
numbered from 1 to N; zero is not valid.

Error E0111 command failed
There was a problem reading or modifying some data for the specified parameter and/or channel. Please contact RBR
Ltd for help.

Error E0505 no channels configured
There is a serious problem with the logger's configuration. Please contact RBR Ltd for help.

Error E0501 item is not configured
There is a problem with the configuration of the specified channel; please contact RBR Ltd for help.

RBR#0005199revL - 132

•
•

•

•

•
•
•

•
•

•
•
•

•
•
•

4.7.6 valve

Usage
>> valve

[id | scheduled | powerondelay | poweroffdelay | interval | duration | command | timetoepisode | startimmediate |
episodelog | operationcount | scheduletype]

Security
Unsafe.

Description
This is a specialized command that has previously appeared only in specific firmware versions (1.119, 1.118, 1.115) used
in BPR|zero logger systems. This documentation now describes the command as implemented in all firmware versions
1.132 or later; there will be some differences from the earlier implementations.

The command returns information about the valve controller used in BPR|zero logger systems, and also allows some
control over it.

id reports (read-only) the type of valve configured to be used with the instrument.
scheduled [= true | false] reports or sets whether or not the valve schedule is enabled for use. The
valve can always be operated by user commands at any time, provided adequate external power is
available.

true: this is the factory default; the valve schedule is enabled for the current or next
deployment
false: the valve schedule is not enabled.

powerondelay reports (read-only) the startup time for the valve in milliseconds.
poweroffdelay reports (read-only) the shut down time for the valve in milliseconds.
interval [= <milliseconds>] reports or sets the interval between valve episodes in milliseconds, for a
uniform schedule (see scheduletype below).

The minimum interval is 120000, or 2 minutes.
For firmware versions prior to 1.142, the maximum interval is 3888000000, corresponding to 45
days. For firmware versions 1.142 or later, the limit has been extended to the equivalent of
45000 days, which in practice is no limit at all.
Only values rounded to the minute are valid, so the number must be a multiple of 60000.
The interval must be greater than the duration.
The factory default value is 3600000ms, or 1 hour.

duration [= <milliseconds>] reports or sets the duration of a valve episode in milliseconds.
The minimum duration is 60000 (1 minute).
The maximum duration is 86400000 milliseconds, which corresponds to 1 day.

Note:

The valve schedule operates only when the instrument is enabled for logging. It will not operate before the
logging start-time, after the logging end-time, or in any other situation where logging is disabled. Simply
setting scheduled = true will not immediately start the valve schedule if logging is not enabled.



RBR#0005199revL - 133

•
•
•

•

•
•
•

•

•

•

•

•

•

The duration must be less than the interval period.
Only values rounded to the minute are valid, so the number must be a multiple of 60000.
The factory default value is 60000ms, or 1 minute.

command [= <command>] sends a particular command to the valve; in the case of a BPR|zero
instrument, <command> can be one of the following options. In all cases, the system may take up to
3000 milliseconds (nominally) to respond with the valve position or return an error message, in
addition to the powerondelay and poweroffdelay times.

setpositionM, moves the valve to Position M (Marine).
setpositionA, moves the valve to Position A (Atmospheric).
getposition, reports the current position or status of the valve. In the event of a fault, the
status may indicate the error.
- positionM
- positionA
- <specific_error_message>

timetoepisode reports (read-only) the time remaining until the start of the next scheduled episode.
The value is reported in milliseconds, but only to a resolution of one second. If the valve schedule is
not enabled, the response is valve timetoepisode = n/a. During an active schedule, the value
reported can range from 1000 up to interval milliseconds. If the schedule is enabled but logging has
not yet started, the reported value will reflect the time until the start of the first episode, correctly
accounting for the setting of the startimmediate parameter (see below). This reported value may be
longer than the interval, of course.
startimmediate [= true | false] reports or sets the point in a uniform schedule (see scheduletype
below) at which the first valve episode will occur:

true: this is the factory default; a valve episode will occur immediately at the start of the
schedule, or following a reset.
false: the first valve episode will be delayed by one interval after the start of the schedule or a
reset.

operationcount reports (read-only) the number of valve movements that have been performed or
attempted since the instrument was configured in the Factory. This can be used to determine whether
the valve is approaching its specified number of guaranteed operations. To be conservative,
attempted movements resulting in some form of error are also included in the count, as there is no
way of telling whether these contribute more or less to general wear and tear than successful
movements.
episodelog [= on | off] can be used to enable, disable, or report whether valve events will be recorded
in the instrument's memory when data logging is enabled. Events occurring outside the data logging
deployment are never recorded. When episodelog = on, an event will be recorded in memory during
the deployment each time an attempt is made to change the state of the valve, whether successful or
not. This applies to both scheduled events and manually commanded events. Each event contains

Note:

Moving the valve, or activating it to request its position, requires a significant amount of power which can not be
provided by the instrument's internal batteries. Before these operations, the instrument checks that the external
power is available and meets the minimum specified voltage threshold (approximately 9V). If it does not, the
response to these commands is an error message of the form valve status = powerfail.
When possible, the instrument remembers the valve position, and so getposition may respond with a valid
position even when there is no power. The reasoning is that if there is no power, the valve can not have moved
since its position was last known.

RBR#0005199revL - 134

•

information to show which position the valve was moved to, or whether some error occurred in the
attempt. The default setting of this parameter is episodelog = on, and it is recommended to keep this
setting in normal circumstances so that a record of valve activity is preserved. If desired, it can be
turned off for testing or other purposes.
scheduletype [= uniform | segmented] is an option available in firmware versions 1.142 or later. The
default setting is uniform, in which the occurrence of episodes within the schedule is governed by the
interval, duration, and startimmediate parameters discussed above (this also applies to all firmware
versions prior to 1.142 that support the valve controller). Alternatively, selecting segmented allows
the schedule of valve episodes to be divided into a series of segments. Each segment effectively has
its own "start time", and an interval between episodes that can be specified independently of other
segments. Refer to the valvesegments and valvesegment commands for further details. For a
segmented schedule, the startimmediate and interval parameters discussed above do not apply;
currently however, the duration parameter always applies to the entire schedule, whether
segmented or uniform.

Examples

>> valve id
<< valve id = valveA

>> valve scheduled
<< valve scheduled = false

>> valve scheduled = true
<< valve scheduled = true

>> valve powerondelay, poweroffdelay
<< valve powerondelay = 1300, poweroffdelay = 50

>> valve command = getposition
<< valve status = positionM

>> valve command = setpositionA
<< valve status = positionA

>> valve command = getposition
<< valve status = positionA

https://docs.rbr-global.com/display/L3DOC/.valvesegments+vL

RBR#0005199revL - 135

>> valve command = setpositionA
<< valve status = powerfail

There is not adequate external power available to move the valve.

>> valve interval, duration
<< valve interval = 3600000, duration = 300000

Errors
Error E0114 feature not supported by hardware
An attempt was made to use the command with a logger that does not have the BPR|zero valve controller installed.

Error E0105 command prohibited while logging
Some settings may not be modified while logging is in progress; reading them is permitted.

Error E0107 expected argument missing
The attempted operation requires an additional argument that was not specified with the command.

Error E0108 invalid argument to command
The argument supplied is not recognized as a valid argument, or an attempt was made to set the value of a read-only
parameter.

Error E0111 command failed
An unidentified problem prevented the operation from being completed.

Error E0702 no devices configured
The configuration of the valve controller interface on this instrument is not correct.

Error E0703 device schedule inconsistent
The interval period is not greater than the duration.

Error E0704 device is not enabled
The attempted operation could not be performed because the device is disabled.

Error E0705 multiple operations not supported: '<extra_operation>'
Some valve operations can not be combined in a single command; try sending them separately.

Error E0701 device error:
An internal error occurred. Please contact RBR Ltd for help.

RBR#0005199revL - 136

•

4.7.7 valvesegments

Usage
>> valvesegments

[count]

Security
Unsafe.

Description
This is a specialized command available in firmware versions 1.142 or later. It is used in BPR|zero logger systems to help
implement a more flexible schedule of valve episodes than was previously available.

If desired, the schedule of valve episodes can now be divided into a series of segments. Each segment effectively has its
own "start time", and an interval between episodes that can be specified independently of other segments. This
command sets or reports the number of segments that will be used during the schedule.

count [= 1...4] reports or sets the number of segments in the valve schedule. The minimum number of
segments is 1, and the maximum is 4.

Refer to the valvesegment command for information on accessing the parameters for each segment.

Examples

>> valvesegments
<< valvesegments count = 2

>> valvesegments count = 3
<< valvesegments count = 3

Errors
Error E0114 feature not supported by hardware
An attempt was made to use the command with a logger that does not have the BPR|zero valve controller installed.

Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

Error E0108 invalid argument to command
The argument supplied is out of range, or is not recognized as a valid argument.

Error E0111 command failed
An unidentified problem prevented the operation from being completed.

Error E0702 no devices configured
The configuration of the valve controller interface on this instrument is not correct.

RBR#0005199revL - 137

Error E0703 device schedule inconsistent
Parameters in one of the enabled segments are not consistent.

RBR#0005199revL - 138

•

•

•

4.7.8 valvesegment

Usage
>> valvesegment

<segment_number> [delay | interval]

Security
Unsafe.

Description
This is a specialized command available in firmware versions 1.142 or later. It is used in BPR|zero logger systems to help
implement a more flexible schedule of valve episodes than was previously available.

If desired, the schedule of valve episodes can now be divided into a series of segments. Each segment effectively has its
own "start time", specified by the delay, and an interval between episodes that can be specified independently of
other segments. This command sets or reports the parameters associated with the requested segment
<segment_number>.

<segment_number> is a required parameter giving the index of the segment to be accessed. The first
segment has an index of 1; this is the minimum value accepted. The maximum acceptable value of the
segment index is equal to the segment count, accessible using the valvesegments command. The
keyword all in place of a <segment_number> causes the parameters for all valid segments to be
reported, segments being separated by a pair of pipe (vertical bar) characters, '||'. Segment 1 is at the
start of the schedule/deployment and is required; the remaining segments are optional, and may be
included or omitted by using the valvesegments count command. If further segments are included,
then they follow Segment 1 in order as the schedule/deployment progresses; it is not possible to 'skip'
a segment.
delay = <delay_ms>. This is the segment delay, measured in milliseconds from the start of
the previous segment; for Segment 1, it is measured from the first sample of the deployment, After
this delay has expired, the given <interval_ms> and the universal duration are used for the valve
schedule. A delay value of zero is permitted only for Segment 1, so that Segment 1 can start
immediately when the schedule/deployment begins; a delay value of zero for any other segment is
forbidden.
interval = <interval_ms>. The time in milliseconds between the start of consecutive valve episodes,
applicable during the specified segment.

Segment parameters can be read and modified while the scheduletype is uniform, and values will be retained even if a
uniform schedule is in use; however, segment parameter settings will not become effective until the scheduletype is
changed to segmented.

When querying or specifying segment parameters, the <segment_number> (or all) is always required and must be
specified first. When setting values, the logger will do some basic error checking, but it is the user's responsibility to
ensure that all three time parameters (delay, interval, and universal duration) are consistent with a valid schedule. It
is not possible to update parameters for multiple segments at once; each segment must be updated separately. The
logger will perform a final check on the consistency of all parameter values before the instrument is enabled.

RBR#0005199revL - 139

All time parameters are in milliseconds, to be consistent with other time parameters for the valve command and many
other logger commands. All values can be specified to a resolution of 1 minute (60000ms). The minimum delay for
Segment 1 is zero; for other segments the minimum value is 60000 (1 minute). The minimum interval is 120000 (2
minutes), since the interval must be greater than the duration, and the minimum for the universal duration is one
minute. The maximum value for both <delay_ms> and <interval_ms> is the equivalent of 45000 days, which in practice
is no restriction at all. The maximum duration is 86400000, corresponding to 1 day.

As the deployment progresses, the instrument evaluates which segment is applicable at the start of each valve episode,
and not continuously between or during episodes. Thus specifying a delay which expires between intervals would
mean that the <new_interval> value does not take effect immediately, but at the start of the next episode scheduled
according to the <current_interval>.

The diagram below should help to clarify the relationships between the parameters for different segments.

Examples

>> valvesegment 1
<< valvesegment 1 delay = 0, interval = 7200000

>> valvesegment 1 delay = 86400000
<< valvesegment 1 delay = 86400000

>> valvesegment all
<< valvesegment 1 delay = 86400000, interval = 7200000 || valvesegment 2 delay = 604800000, interval = 86400000

Note

Segment 3 in the above example illustrates what happens if a delay is specified that does not coincide with the start
of an interval. The logger re-evaluates the schedule only at the start of each interval according to
the current segment parameters, so the parameters for Segment 3 do not take effect until the current interval of
Segment 2 has ended.

RBR#0005199revL - 140

>> valvesegment 3 interval = 172800000
<< E0108 invalid argument to command '3'
>> valvesegments
<< valvesegments count = 2
>> valvesegment 2 interval = 172800000
<< valvesegment 2 interval = 172800000

Errors
Error E0114 feature not supported by hardware
An attempt was made to use the command with a logger that does not have the BPR|zero valve controller installed.

Error E0105 command prohibited while logging
Settings may not be modified while logging is in progress; reading them is permitted.

Error E0107 expected argument missing
A required argument to the command was not given; for example, there must always be a <segment_index> specifying
the segment to access.

Error E0108 invalid argument to command
The argument supplied is out of range, or is not recognized as a valid argument.

Error E0111 command failed
An unidentified problem prevented the operation from being completed.

Error E0702 no devices configured
The configuration of the valve controller interface on this instrument is not correct.

RBR#0005199revL - 141

•
•

•
•

•
•
•

•
•
•

4.7.9 uvled

Usage
>> uvled

[id | scheduled | powerondelay | poweroffdelay | interval | duration | command | timetoepisode | startimmediate |
operatingtime | episodelog]

Security
Unsafe.

Description

This is a specialized command available in firmware versions 1.130 or later. It is used to return information about, and
to allow some control over, the UV-LED antifouling device used in the RBRconcerto3 CTD|UV data logger, and other
instruments equipped with the UV antifouling feature. If the command is sent to an instrument that does not have the
UV antifouling feature, the instrument will respond with an error message:

Error E0114 feature not supported by hardware

The following options are available for use with this command.

id reports (read-only) the type of UV-device configured to be used with the instrument.
scheduled [= true | false] reports or sets whether or not the UV-LED schedule is enabled for
use. The UV-LEDs can always be operated by user commands at any time, provided adequate power is
available.

true: the UV-LED schedule is enabled for the current or next deployment.
false: the UV-LED schedule is not enabled. This is the as-shipped factory default, for safety
reasons when shipping.

powerondelay reports (read-only) the startup time for the UV-LEDs in milliseconds.
poweroffdelay reports (read-only) the shut down time for the UV-LEDs in milliseconds.
interval [= <milliseconds>] reports or sets the interval between UV-LED episodes in milliseconds.

Minimum interval is 60000, or 1 minute.
The maximum interval is 3888000000, corresponding to 45 days.
Only values rounded to the minute are valid, so the number must be a multiple of 60000.

USER CAUTION REQUIRED

The UV-LED antifouling device emits ultra-violet radiation in the C-band. Prolonged exposure may cause skin
and/or eye irritation, and should be avoided; it is recommended that appropriate shielding and safety glasses
are used when operating the instrument. UV radiation is not directly visible to the naked eye, and immersion
in water offers no protection.



Note:

The UV-LED schedule operates only when the instrument is enabled for logging. It will not operate before the
logging start-time, after the logging end-time, or in any other situation where logging is disabled. Simply
setting scheduled = true will not immediately start the UV-LED schedule if logging is not enabled.



RBR#0005199revL - 142

•
•

•
•
•
•
•
•

•

•
•
•

•

•

•

•

•

•

The interval must be greater than the duration.
The as-shipped factory default value is 600000ms, or 10 minutes.

duration [= <milliseconds>] reports or sets the duration of an UV-LED episode in milliseconds.
Minimum duration is 1000 (1 second).
Maximum is 86400000 milliseconds, which corresponds to 1 day.
The duration must be less than the interval period.
Only values rounded to the second are valid, so the number must be a multiple of 1000.
The factory default value is 1000ms, or 1 second.

command [= <command>] sends a particular command to the UV-LED device; <command> can be one
of the following options. In all cases, the system typically responds within 1 second.

activate, turns the UV-LEDs ON.
deactivate, turns the UV-LEDs OFF.
status, reports the current ON/OFF state of the UV-LEDs.
- activated
- deactivated

timetoepisode reports (read-only) the time remaining until the start of the next scheduled UV-LED
episode. The value is reported in milliseconds, but only to a resolution of one second. If the UV-LED
schedule is not enabled, the response is uvled timetoepisode = n/a. During an active schedule, the
value reported can range from 1000 up to interval milliseconds. If the schedule is enabled but logging
has not yet started, the reported value will reflect the time until the start of the first episode, correctly
accounting for the setting of the startimmediate parameter (see below). This reported value may be
longer than the interval, of course.
startimmediate [= true | false] reports or sets the point in the schedule at which the first UV-LED
episode will occur.

true: this is the factory default; a UV-LED episode will occur at the start of the schedule, or
following a reset. Normally, there may be a delay of up to 1 minute, because episodes are
constrained to start on a 1-minute boundary according to the instrument's internal clock.
However in some situations it is possible for an episode to start immediately the instrument is
enabled for sampling.
false: the first UV-LED episode will be delayed by one interval after the start of the schedule or
a reset.

operatingtime reports (read-only) in milliseconds the cumulative time for which the UV-LEDs have
been energized since configuration at the Factory. The optical output power of the UV-LEDs reduces
over time, and this parameter can be used to make decisions about whether the LEDs should be
refurbished or replaced.
episodelog [= on | off] can be used to enable, disable, or report whether UV-LED events will be
recorded in the instrument's memory when data logging is enabled. Events occurring outside the
data logging deployment are never recorded. When episodelog = on, an event will be recorded in
memory during the deployment each time an attempt is made to change the state of the UV-LEDs,

Note:

For testing, bench trials, and other non-deployment scenarios, it is normally possible to power an
RBRconcerto3 from a USB connection alone. However, accessing a device - and in particular turning the UV-
LEDs ON - can require a significant amount of power which a USB port may not be able to provide. Before
these operations, the instrument checks that there is a source of available power other than USB; if USB is the
only power source available, the response to these commands is an error message, uvled status = powerfail.



RBR#0005199revL - 143

whether successful or not. This applies to both scheduled events and manually commanded events.
Each event contains information to show whether the UV-LEDs were turned on, or turned off, or
whether some error occurred in the attempt. The default setting of this parameter is episodelog = on,
and it is recommended to keep this setting in normal circumstances so that a record of UV-LED activity
is preserved. If desired, it can be turned off for test purposes, or at very low sample rates where the
number of episode events is comparable to the number of samples.

Examples

>> uvled id
<< uvled id = RBR_uvled_00

>> uvled scheduled
<< uvled scheduled = false

>> uvled scheduled = true
<< uvled scheduled = true

>> uvled powerondelay, poweroffdelay
<< uvled powerondelay = 10, poweroffdelay = 10

>> uvled command = status
<< uvled status = deactivated

>> uvled command = activate
<< uvled status = activated

>> uvled command = status
<< uvled status = activated

>> uvled command = activate
<< uvled status = powerfail

There is no power source available to activate the UV-LEDs; USB alone can not be used.

>> uvled interval, duration
<< uvled interval = 600000, duration = 6000

RBR#0005199revL - 144

Errors
Error E0114 feature not supported by hardware
An attempt was made to use the command with a logger that does not have the UV antifouling feature installed.

Error E0105 command prohibited while logging
Some settings may not be modified while logging is in progress; in most cases reading them is permitted.

Error E0107 expected argument missing
The attempted operation requires an additional argument that was not specified with the command.

Error E0108 invalid argument to command
The argument supplied is not recognized as a valid argument, or an attempt was made to set the value of a read-only
parameter.

Error E0111 command failed
An unidentified problem prevented the operation from being completed.

Error E0702 no devices configured
The configuration of the UV-LED on this instrument is not correct.

Error E0703 device schedule inconsistent
The interval period is not greater than the duration.

Error E0704 device is not enabled
The attempted operation could not be performed because the device is disabled.

Error E0705 multiple operations not supported: '<extra_operation>'
Some operations can not be combined in a single command; try sending them separately.

Error E0701 device error:
An internal error occurred. Please contact RBR Ltd for help.

RBR#0005199revL - 145

RBR#0005199revL - 146

4.8 Communications

RBR#0005199revL - 147

•

4.8.1 link

Usage
>> link [type]

Security
Open.

Description
Returns the name of the communications link over which the command was received, allowing the host to determine
whether a genuine serial link is in use, or the CDC serial profile of a USB connection, or wifi connection.

It reports a single parameter:

type, is the communication link in use, either: usb, serial and wifi .

Examples

>> link
<< link type = usb

>> link
<< link type = serial

>> link
<< link type = wifi

Errors
None.

RBR#0005199revL - 148

•

•

a.

i.

ii.

iii.

4.8.2 serial

Usage
>> serial [baudrate | mode | availablemodes | availablebaudrates]

Security
Open.

Description
This command can be used to either report or set the parameters which apply to the serial link. The command can be
issued over either the USB or serial links, but care must obviously be taken if the serial link is used to change its own
operating parameters. In this case, new settings are acknowledged while the old parameters are still in force, then the
changes are applied. The next command sent must use the new configuration of the link if the logger is to recognize it.
The individual parameters are described below.

baudrate [= <baudrate>]: baudrate of the serial link.

mode [= <mode>]: this parameter allows the electrical interface standard used for the serial link to be
changed, the available choices being listed below. Different modes typically require differences in
hardware, so changing modes may not always be appropriate. The most common mode is RS-232, and
this is the default setting typically shipped from the factory. If an instrument has been built to use one
of the other interfaces, the mode will be correctly set when the instrument is shipped.

rs232: This is the legacy standard used by default on most equipment with serial ports, referred
to as RS-232, EIA-232, TIA-232, or variations on one of these depending on the revision, but for
most practical purposes they are interchangeable. The logger's implementation of RS-232 is
always full duplex, with no hardware flow control lines required: transmit, receive and ground
are the three connections needed.

rs485f: This is the full duplex version of the RS-485 standard (also EIA-485, TIA-485, etc),
which permits higher speeds and/or longer distances than RS-232. A five-conductor cable
is required; two lines each for both receive and transmit, plus a ground connection. In
most cases a simple cable will work, but at extreme speeds and distances, the transmit
and receive line pairs may require impedance matching termination components. The
logger does not include these, as they will be specific to each individual installation.
rs485h: This mode is planned, but not yet supported on any loggers. It is the half duplex
version of RS-485, which requires only three connections: ground plus a data line pair
which is used for both receive and transmit.
uart: This offers logic level (0-3.3V swing) serial interface to the UART on the logger’s
serial port. The “idle” state of the line, i.e. the state of the serial transmit line during the
time before and after transmission of data bytes, is high (3.3V). This may be a useful
option for OEM integrators, typically over short distances to another piece of equipment,
where the communication link is not exposed to the outside world. In this mode, it is
worth noting that the serial receiver interface on the logger has a (nominal) 5KΩ
pulldown resistor to 0V in the circuit at all times. As such, in order to minimize current
consumption while there is no serial activity, it is recommended that the serial transmit

RBR#0005199revL - 149

iv.

•

•

signal coming from the circuit that the logger is interfaced to is either tristated off (high
impedance) or held at a logic low (0V).
uart_idlelow: the same as uart, but with inverted logic levels, so that the "idle" state is
low (0V). This may be thought of as the same logic states as RS232, except that it utilizes
0-3.3V logic levels.

availablemodes: report the list of available modes.

availablebaudrates: report the list of available baudrates

Examples

>> serial
<< serial baudrate = 19200

>> serial baudrate = 115200
<< serial baudrate = 115200

>> serial mode
<< serial mode = rs232
>> serial mode = rs485f
<< serial mode = rs485f

>> serial availablebaudrates

<< serial availablebaudrates = 115200|19200|9600|4800|2400|1200|230400|460800

>> serial availablemodes
<< serial availablemodes = rs232|rs485f|uart|uart_idlelow

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not a recognized parameter name, baud rate value, or mode setting.

Error E0114 feature not supported by hardware
To avoid permanently disrupting a communications link, changing any of the serial link's operating parameters is not
permitted if a WiFi module is in use, even if the logger would otherwise support these options.

RBR#0005199revL - 150

•
•

•

4.8.3 sleep

Usage
>> sleep [confirmation = true | false]

Security
Open.

Description
Immediately shuts down communications and implements any power saving measures which are possible, over-riding
the 10-second timeout which normally invokes these actions (see Section Timeouts, Output Blanking and Power
Saving). Power saving measures typically include:

any interface circuitry used for a Serial link,
sensor channels activated only for the purpose of satisfying a fetch command.

Any scheduled sampling activity is not affected. The sleep command does not attempt to power down a USB link,
because there is always enough power available via USB to run the logger's basic functions; sensor channels used for a
fetch command will still be shut down.

If used without any parameters, the command generates no error messages, and always succeeds silently; there is no
prompt or confirmation message.

Firmware versions 1.116 or later support an optional confirmation parameter. If this is used with a value of true, a
confirmation message is generated, but no prompt.

confirmation = true | false When a confirmation is asked for using 'confirmation = true', the sleep
command will respond with 'sleep status = sleeping' before entering sleep mode.

Examples

>> sleep

>> sleep confirmation = false

>> sleep confirmation = true

<< sleep status = sleeping

RBR#0005199revL - 151

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not a recognized parameter name.

RBR#0005199revL - 152

•

•

•

•

•

4.8.4 wifi

Usage
>> wifi [enabled | state| timeout | commandtimeout | baudrate]

Security
Unsafe.

Description
This command allows the user to retrieve information about the Wi-Fi link, and to control some aspects of its behaviour.
Please note that some instruments may not have a Wi-Fi link available.

The parameters currently supported are:

enabled [= true|false], enables (true) or disables (false) Wi-Fi functionality. The logger may support a
WiFi link, but it will not be used if disabled.

state is a read-only parameter which shows whether an enabled Wi-Fi link is on (powered up and
ready to communicate) or off (powered down); a disabled Wi-Fi link will report n/a for the state.

timeout [= <timeout>], specifies how long in seconds an enabled Wi-Fi link will wait for the first valid
command after powering up. If the timeout expires, the Wi-Fi link is powered down. The timeout can
be set to a value from 5 up to 600 seconds; the default value is 60 seconds.

commandtimeout [= <commandtimeout>], specifies how long in seconds an enabled Wi-Fi link will
wait between commands after the first valid one. If the timeout expires, the Wi-Fi link is powered
down. The timeout can be set to a value from 5 up to 600 seconds; the default value is 60 seconds.

baudrate is a read-only parameter reporting the speed of an internal connection between the Wi-Fi
module and the instrument's CPU. This information may be of use in optimizing data transfer
parameters when downloading data from the logger via the Wi-Fi link.

Examples

>> wifi timeout = 120
<< wifi timeout = 120 commandtimeout = 60
>> wifi
<< wifi timeout = 120 commandtimeout = 60

RBR#0005199revL - 153

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The command was given with an argument which is unrecognized or has an invalid value; for example "wifi timeout =
4".

Error E0105 command prohibited while logging
Parameters may not be modified while logging is in progress; reading the parameter values is permitted.

Error E0109 feature not available
The instrument does not support a Wi-Fi link.

Error E0114 feature not supported by hardware
The instrument is not capable of supporting a Wi-Fi link.

RBR#0005199revL - 154

4.9 Other Information

RBR#0005199revL - 155

•

•

•

•

•

4.9.1 id

Usage
>> id [model | version | serial | fwtype]

Security
Open.

Description
This is a read-only command which report basic information about the instrument:

model, model name of the instrument.

version, firmware version.

serial, serial number is always reported using six digits, padded with leading zeroes if necessary.

fwtype, always report 104 for RBRvirtuoso³, RBRduo³, RBRconcerto³, and RBRmaestro³ models and all
the L3 platform based models. The fwtype parameter is used to identify different products among the
range of RBR's dataloggers.

mode, only reported when simulation mode is enabled, with the value SIMULATION

Examples

>> id serial
<< id serial = 050032

>> id
<< id model = RBRoem, version = 1.000, serial = 050032, fwtype = 104

Refer to the command simulation for more details.

>> simulation
<< simulation state = on, period = 3000
>> id
<< id mode = SIMULATION, model = RBRconcerto3, version = 1.000, serial = 012345, fwtype = 104

RBR#0005199revL - 156

Errors
None.

RBR#0005199revL - 157

4.9.2 help

Usage
>> help [<command-name>]

Security
Open.

Description
The help command, without arguments, generates a list of all known commands along with possible parameters and a
short description of functionality. If a single valid command name is passed to the help command, only the description
for that command is returned.

Examples

>> help id
<< id [model|version|serial|fwtype]: report unit identification

Errors
Error E0102 invalid command '<unknown-command-name>'
Help was requested for an unknown command.

RBR#0005199revL - 158

•

•

•

4.9.3 hwrev

Usage
>> hwrev [pcb | cpu | bsl]

Security
Open.

Description
Reports various pieces of information about the revision status of the logger's main circuit card. Not usually of interest
except for diagnostic purposes, or to determine whether hardware-dependent features may or may not be available in
advance of trying to use them.

The parameters reported are:

pcb, is a letter such as 'C', 'F', etc., which represents the revision level of the main PCB (Printed Circuit
Board) inside the logger.

cpu, is a number and letter, identifying the type and silicon revision of the CPU chip used on the main
PCB.

bsl, is a letter giving the version of a firmware component used to reprogram the CPU chip in-situ.

Examples

>> hwrev
<< hwrev pcb = J, cpu = 5659A, bsl = A

Errors
None.

RBR#0005199revL - 159

•
a.
b.
c.

•

•
•

4.9.4 power

Usage
>> power [source | int | ext | reg]

Security
Open.

Description
Reports parameters relating to the logger's power sources as follows:

source is one of the following names:
usb the logger is drawing power from the USB connection.
int the logger is drawing power from its internal battery.
ext the logger is drawing power from an external power source.

int reports the measured voltage of a standard logger's internal battery; for a short logger, reports n/
a.
ext reports the measured voltage of any external power source attached.
reg reports the measured voltage of a short logger's internal voltage regulator; for a standard logger,
reports n/a.

Support for short instruments starts with firmware version 1.080; earlier firmware versions do not report the reg
parameter. A short instrument is one which takes only four AA cells instead of the standard eight. In a short instrument,
a direct measurement of the internal battery can not be made, and the output of an internal voltage regulator is
reported instead. Standard instruments do not have an equivalent regulator, but can monitor the battery voltage
directly.

Examples

>> power
<< power source = usb, int = 12.40, ext = 0.00, reg = n/a

>> power int
<< power int = 12.39

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
The supplied argument was not a recognized parameter name.

RBR#0005199revL - 160

Error E0111 command failed
A requested parameter could not be measured because of an A/D converter failure.

RBR#0005199revL - 161

•

a.
b.
c.
d.
e.
f.

•

•

4.9.5 powerinternal

Usage
>> powerinternal [batterytype | capacity | used]

Security
Open.

Description
Allows various parameters to be reported or set for the current deployment.

batterytype [= <batterytype>], has a value corresponding to a chemical description of the various
battery types supported; see the list below. The special name none indicates that no battery
considered to be internal to the logger is present, and it will run exclusively from an external power
source.
The batterytype may be set prior to a deployment; it can not be changed while a deployment is in
progress. If proper estimates are required for battery capacity used and deployment life available, it is
very important that the selected batterytype value matches the batteries actually in use.
Currently supported battery types are:

lisocl2 (Li-SOCl₂)
lifes2 (Li-FeS₂)
znmno2 (Zn-MnO₂)
linimnco (Li-NiMnCo)
nimh (NiMH)
none

capacity is a read-only parameter which reports the total nominal energy capacity (in Joules) of the
internal battery set. It can not be changed directly, but changes according to the selected
batterytype.

used [= 0], reports the accumulated energy used from the internal battery since the value was last
reset. The value continues to be updated even if it exceeds the nominal capacity. When fresh batteries
are installed the value can be reset to zero; this is the only accepted value for updating the parameter.

Examples

>> powerinternal
<< powerinternal batterytype = nimh, capacity = 138.000e+003, used = 100.100e+003

RBR#0005199revL - 162

>> powerinternal used = 0
<< powerinternal used = 0.000e+000

Errors
Error E0108 invalid argument to command: '<invalid-argument>'

RBR#0005199revL - 163

•

a.
b.
c.
d.
e.
f.

g.
h.
i.
j.

•

•

4.9.6 powerexternal

Usage
>> powerexternal [batterytype | capacity | used]

Security
Open.

Description
Allows various parameters to be reported or set for the current deployment.

batterytype [= <batterytype>], has a value corresponding to a description of the various battery types
supported; see the list below. The RBRfermata, RBRfermette and RBRfermette3 battery packs are
provided by RBR Ltd; for any other type of external power source, other should be used.
The batterytype may be set prior to a deployment; it can not be changed while a deployment is in
progress. If proper estimates are required for battery capacity used and deployment life available, it is
very important that the selected batterytype value matches the power source actually in use.
Currently supported battery types are:

fermata_lisocl2 (Li-SOCl₂-equipped RBRfermata)
fermata_znmno2 (Zn-MnO₂-equipped RBRfermata)
fermette_limno2 (Li-MnO₂-equipped RBRfermette)
fermette3_lisocl2 (Li-SOCl₂-equipped RBRfermette3)
fermette3_lifes2 (Li-FeS₂-equipped RBRfermette3)
fermette3_znmno2 (Zn-MnO₂-equipped RBRfermette3)
fermette3_linimnco (Li-NiMnCo-equipped RBRfermette3)
fermette3_nimh (NiMH-equipped RBRfermette3)
fermata_nimh (NiMH-equipped RBRfermata - f/w version 1.140 or later)
other

capacity is a read-only parameter which reports the total nominal energy capacity (in Joules) of
the external battery pack. It can not be changed directly, but changes according to the
selected batterytype. The capacity value for the power source type other is currently zero, but energy
used from this source will still be tracked; see below.

used [= 0] reports the accumulated energy used from the external power source since the value was
last reset. The value continues to be updated even if it exceeds the nominal capacity. If a fresh battery
pack is installed the value can be reset to zero; this is the only accepted value for updating the
parameter.

RBR#0005199revL - 164

Examples

>> powerexternal
<< powerexternal batterytype = fermata_lisocl2, capacity = 22.000e+006, used = 100.100e+003

>> powerexternal used = 0
<< powerexternal used = 0.000e+000

Errors
Error E0108 invalid argument to command: '<invalid-argument>'

RBR#0005199revL - 165

•
•

4.9.7 info

Usage
>> info [pn]

Security
Open.

Description
This is a read-only command which reports more information about the logger. Currently it reports:

pn, RBR part number of the instrument
for firmware versions 1.094 or higher, fwlock = on|off

The fwlock parameter is set at the factory, and for most instruments it is off, which means that the standard method of
updating instrument firmware using the Ruskin software can be used. For some OEM applications requiring that the
version of firmware does not change, the fwlock is set to on, which prevents firmware updates by the standard method.
If necessary, a special procedure can be used to override this 'locked' state; please contact RBR Ltd if you believe you
need to do this.

Examples

>> info pn
<< info pn = 0123456revA

>> info
<< info pn = L3-M13-F15-BEC12-INT12-SCT16-SP11

For firmware versions 1.094 or higher:

>> info
<< info pn = L3-M13-F15-BEC12-INT12-SCT16-SP11, fwlock = off
>> info fwlock
<< info fwlock = off

Errors
None.

RBR#0005199revL - 166

4.9.8 getall

Usage
>> getall

Security
Open.

Description
This is a read-only command which reports all the information and settings in the logger. It reports all the parameters
and settings in use by the logger. It outputs the result over several lines unlike standard commands. If a feature is
unavailable, its associated command result will not be part of the getall.

Examples

>> getall
<< serial baudrate = 115200, mode = rs232, availablebaudrates = 115200|19200|9600|4800|
2400|1200|230400|460800, availablemodes = rs232|rs485f|uart|uart_idlelow
prompt state = on
confirmation state = on
link type = usb
streamusb state = off
streamserial state = off, aux1_enabled = false, aux1_setup = 1000, aux1_hold = 1000,
aux1_active = high, aux1_sleep = tristate
power source = usb, int = 0.00, ext = 0.00
powerinternal batterytype = none, capacity = 0.000e+000, used = 0.000e+000
powerexternal batterytype = other, capacity = 0.000e+000, used = 0.000e+000
meminfo used = 834, remaining = 1056963096, size = 1056964608
memformat type = rawbin00, newtype = calbin00
settings fetchpoweroffdelay = 8000, sensorpoweralwayson = off, temperature = 15.0000,
atmosphere = 10.1325010, pressure = 10.1325, density = 1.0260209, speccondtempco =
0.0191, salinity = 35.0000, avgsoundspeed = 1506.8000, altitude = 0.0000, castdetection
= off, inputtimeout = 10000
clock datetime = 20000101041228, offsetfromutc = unknown
sampling mode = continuous, period = 20000, burstlength = 10, burstinterval = 300000,
gate = none, userperiodlimit = 500, availablefastperiods = 500
twistactivation enabled = false, state = n/a
ddsampling direction = ascending, fastperiod = 1000, slowperiod = 5000, fastthreshold =
3.0, slowthreshold = 3.0
deployment starttime = 20000101000000, endtime = 20991231235959, status = stopped
calibration 1 label = temperature_00, datetime = 20000401000000, c0 = 3.5000000e-003,
c1 = -250.00002e-006, c2 = 2.7000000e-006, c3 = 23.000000e-009 || calibration 2 label =
pressure_00, datetime = 20000401000000, c0 = 0.0000000e+000, c1 = 1.0000000e+000, c2 =
0.0000000e+000, c3 = 0.0000000e+000, x0 = 0.0000000e+000, x1 = 0.0000000e+000, x2 =
0.0000000e+000, x3 = 0.0000000e+000, x4 = 0.0000000e+000, x5 = 0.0000000e+000, n0 =
value || calibration 3 label = phycoerythrin_00, datetime = 20000401000000, c0 =
0.0000000e+000, c1 = 1.0000000e+000 || calibration 4 label = seapressure_00, datetime =
20000401000000, n0 = value, n1 = value || calibration 5 label = depth_00, datetime =

RBR#0005199revL - 167

20000401000000, n0 = value, n1 = value
outputformat type = caltext01, availabletypes = caltext01|caltext02|caltext03|
caltext04|caltext07, labelslist = temperature_00|pressure_00|phycoerythrin_00|
seapressure_00|depth_00
simulation state = off, period = 3600000
id model = RBRconcerto3, version = 1.000, serial = 999999, fwtype = 104
info pn = n/a
hwrev pcb = J, cpu = 5659A, bsl = A
channels count = 5, on = 5, settlingtime = 600, readtime = 350, minperiod = 500
channel 1 type = temp09, module = 1, status = on, settlingtime = 50, readtime = 260,
equation = tmp, userunits = C, label = temperature_00 || channel 2 type = pres24,
module = 2, status = on, settlingtime = 50, readtime = 290, equation = corr_pres2,
userunits = dbar, label = pressure_00 || channel 3 type = fluo00, module = 40, status =
on, settlingtime = 600, readtime = 350, equation = lin, userunits = ug/L, label =
phycoerythrin_00 || channel 4 type = pres08, module = 240, status = on, settlingtime =
0, readtime = 0, equation = deri_seapres, userunits = dbar, label = seapressure_00 ||
channel 5 type = dpth01, module = 241, status = on, settlingtime = 0, readtime = 0,
equation = deri_depth, userunits = m, label = depth_00
sensor 1 || sensor 2 || sensor 3 || sensor 4 || sensor 5
wifi enabled = false, state = n/a, timeout = 60, commandtimeout = 60, baudrate = 921600
postprocessing status = idle, channels = mean(pressure_00)|mean(temperature_00)|
mean(phycoerythrin_00), tstamp_min = 20000101000000, tstamp_max = 20991231235959,
binsize = 1.0, binreference = tstamp, depth_min = -10.0, depth_max= 15000.0, binfilter
= none

Errors
None.

RBR#0005199revL - 168

4.10 Data sample

RBR#0005199revL - 169

•

•
a.

b.

4.10.1 fetch

Usage
>> fetch [channels | sleepafter]

Security
Open.

Description
Requests an 'on-demand' sample set from the logger. If a recent scheduled sample set is available, those values may be
returned to satisfy the fetch request. 'Recent' in this context currently means less than 500ms old. Otherwise, a sample
set is explicitly acquired for the benefit of the fetch. A sample set acquired only for fetch is never stored in memory.

The logger simply responds with the <sample-data>; depending on the configured settling time (or power-on settling
delay) for the attached sensors, there may be a noticeable delay before the <sample-data> appears. Refer to the
channels command for further discussion of settling time.

channels [= <listofchannels>], is the list of channels to be acquired, using either indices or labels of
channels (see channel). The output format of the <sample-data> is the channels samples in the same
order. If this parameter is not provided, the output format of the <sample-data> is determined by the
outputformat command.

sleepafter [= <sleepafter>], controls power strategy after the fetch is issued. <sleepafter> is either:
false (default behavior), subsequent fetch commands may return data more quickly; after an
initial fetch command, the sensors usually remain powered up in anticipation of another
request. This behaviour is protected by an 8-second (default) timeout, after which the sensors
are turned off again. Refer to the settings command for information on changing the default
sensor power-off timeout.
true causes the logger to power down when it has finished reporting the <sample-data>. This is
equivalent to issuing two separate commands, fetch then sleep, except that after completing
the fetch the logger goes to sleep silently; there is no "Ready" prompt following the <sample-
data>, just as there is no "Ready" prompt following a sleep command. Note that the entire
logger powers down if possible, not just the sensors; however if any normally scheduled
samples are required immediately after the fetch, the power down action will be delayed until
after those samples are complete.

Examples

>> outputformat labelslist
<< outputformat labelslist= temperature_00|pressure_00

If a channel or one of its supporting channel has its status set to off, requesting that channel will return
an Error-14 as sample data for this channel. See channel for details.



RBR#0005199revL - 170

>> fetch
<< 2017-10-21 11:50:49.000, 18.1745 C, 12.7052 dbar

Fetch a sample from all channels.

>> channel 1 type
<< channel 1 type = cond07
>> channel 2 type

<< channel 2 type = temp14

>> channel 3 type

<< channel 3 type = pres24
>> outputformat type, labelslist
<< outputformat type = caltext02, labelslist= conductivity_00|temperature_00|pressure_00

>> fetch
<< 2017-10-21 11:50:49.000, 40.0120 mS/cm, 18.1745 C, 12.7052 dbar
>> fetch channels = 3|2
<< 2017-10-21 11:50:49.000, 12.7052 dbar, 18.1745 C
>> fetch channels = pressure_00|temperature_00, sleepafter=true
<< 2017-10-21 11:50:49.000, 12.7052 dbar, 18.1745 C

Fetch a sample from some specific channels.

>> fetch
<< 2020-11-25 15:31:55.000, Error-07, ###, Error-14

Fetch command reporting error for channel 1 (timeout) and channel 3 (unable to compute value). Channel 2 is not
calibrated. List of error code can be found in within Sample data standard format.

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
An unrecognized argument was given with the command.

Error E0107 expected argument missing
If the sleepafter option is used, a value of either true or false must also be supplied.

Error E0410 no sampling channels active
Indicates that the logger has no channels activated for sampling.

Error E0111 command failed
Indicates a serious fault with the logger; please contact RBR Ltd for help.

RBR#0005199revL - 171

4.11 Security and Interaction

RBR#0005199revL - 172

•

4.11.1 permit

Usage
>> permit [command]

Security
Open. Permitted commands may have further restraints (i.e., may be unsafe).

Description
Permits a protected command to be executed immediately after this one; receipt of anything else removes the
permission again. Any other constraints on executing a particular command will still apply. It is not an error to 'permit'
a command which does not need it, merely unnecessary.
It takes as a mandatory parameter:

command = <commandname>, where <commandname> is the command to permit.

Examples

>> permit command = memclear
<< permit command = memclear
>> memclear
<< memclear used = 0

Successfully clears the data memory.

>> memclear
<< E0103 protected command, use 'permit command = memclear'

Fails because memclear is a protected command.

>> permit command = memclear
>> id
>> memclear
<< E0103 protected command, use 'permit command = memclear'

Fails because permit must immediately precede the protected command.

Errors
Error E0107 expected argument missing
No <command-name> argument was given.

RBR#0005199revL - 173

Error E0108 invalid argument to command: '<invalid-argument>'
The <command-name> argument given is not a recognized command.

RBR#0005199revL - 174

•
a.
b.

4.11.2 prompt

Usage
>> prompt [state]

Security
Open.

Description
Returns the state of the "Ready: " prompt, which is normally sent by the logger in response to almost any command
after any other output generated by the command is complete.

state [= <state>]
on, the prompt is sent
off, the prompt is suppressed.

A change of the on/off state takes place immediately, so for example there will be no prompt following the command
which turns it off. Turning the prompt off is not normally recommended, unless there is a very good reason for doing so.
For example, if it is interfering with the parsing of responses by an automated system, it may be necessary to suppress
it.

Examples

>> prompt
<< prompt state = on

>> prompt state = off
<< prompt state = off

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
An unrecognized argument was given.

RBR#0005199revL - 175

•
a.
b.

1.
2.
3.
4.

4.11.3 confirmation

Usage
>> confirmation [state]

Security
Open.

Description
Returns the state of the logger's confirmation responses, normally sent after a parameter has been modified if the state
is on. If the state is off, successful parameter modifications occur without confirmation messages.

state [= <state>]
on, the confirmation is sent
off, the confirmation is suppressed.

A change of the on/off state takes place immediately, so for example there will be no confirmation of the command
which turns it off.

There are several situations in which the suppression does not occur even if the state is off, here are some points to
note:

Requests to simply report a parameter always generate output.
Error messages resulting from a failed attempt to set a parameter are always sent.
Some 'action' commands such as enable always generate a confirmation message.
The "Ready: " prompt is controlled separately by the prompt command.

Turning confirmation off is not normally recommended, unless there is a very good reason for doing so.

Examples

>> confirmation
<< confirmation state = on
>> confirmation state = off
<<

Confirmation of a parameter change is immediately suppressed.
The following example commands are all with confirmation state = off:

>> deployment starttime
<< starttime = 20171207130000

RBR#0005199revL - 176

A request for information always provokes a response.

>> deployment starttime = 120601120000
<< E0108 invalid argument to command: '120601120000'

A failed attempt to set a parameter still provokes a response.

>> deployment starttime = 20171201120000
<<

Response suppressed if parameter is successfully changed.

Errors
Error E0108 invalid argument to command: '<invalid-argument>'
An unrecognized argument was given.

RBR#0005199revL - 177

4.11.4 reboot

Usage
>> reboot [<milliseconds-delay>]

Security
Protected.

Description
This command executes a logger CPU reset. The reset will apply only to the CPU itself and any hardware directly under
its control; there is no guarantee that every component in the logger system will be reset in the same way that cycling
power to the logger would achieve.

The optional delay argument in milliseconds is useful when using the command over a USB-CDC communication link.
When the logger CPU resets, any USB-CDC link between it and the host will be torn down and then re-established,
meaning that the virtual serial port associated with the CDC profile temporarily disappears for a brief time. Most
communications software is unable to cope with such an event, so providing some time to disconnect the software
from the logger before the port disappears allows the operation to be performed gracefully.

This does not apply to a true Serial link, so there are no side effects if the logger is reset without specifying a delay. The
link command can be used to verify the type of communications link if there is any doubt.

Except in the case of the error message reported if the permit mechanism is not used, there is no response to the
command: once the reset occurs the logger no longer has any memory of receiving the command, so it can not respond.

Examples

>> permit command = reboot
<< permit command = reboot
>> reboot

Successfully resets the logger CPU.

>> reboot
<< E0103 protected command, use 'permit command = reboot'

Fails because reboot is a protected command.

>> permit command = reboot
<< permit command = reboot
>> reboot 5000

Successfully resets the logger CPU after a delay of five seconds.

RBR#0005199revL - 178

Errors
Error E0103 protected command, use 'permit command = <command>'
permit command = reboot must immediately precede the command to reset the logger.

RBR#0005199revL - 179

5 Format of Stored Data

RBR#0005199revL - 180

1.

2.
3.

1.
2.
3.

1.

5.1 Overview
There are three major types of deployment information stored in a logger's memory:

a deployment header, which contains meta-information about the logger and the deployment
parameters.
sample data, comprising sets of measured values from all active channels in the logger.
events, which are records of non-sample incidents used to aid interpretation, or for diagnostics.

Below is a brief overview of the available storage formats used to record all this information: detailed descriptions are
presented in later sections. To determine which storage formats are available, use the memformat support command.
If the logger does not recognize this command, then Standard format is the only one supported.

5.1.1 Standard format

All loggers support a data format known colloquially as 'Standard', and formally as 'rawbin00'. In Standard format, the
three major types of deployment information are stored in a single dataset. This has the benefit that retrieving the data
ensures that all information relevant to the deployment is present, producing a complete, self-contained deployment
record in a single download operation.

The organization of the stored information within the dataset is as follows:

the deployment header is always stored at the beginning, then
following the header, sample data is stored as it accumulates, while
events are stored as they occur, embedded in the stream of sample data.

A further benefit to this approach is that because items are stored chronologically, much of the date/time information -
in particular for sample sets - is implicit, and no memory is consumed by additional timestamp information.
Disadvantages are that the data needs to be parsed carefully to interpret it properly, and that there is no 'local context'
for isolated snippets of data: in general the entire dataset is needed to ensure all timing information is correctly
decoded.

The format used must be set before a deployment is started by the memformat newtype command. When
downloading data, use the memformat type command to determine the format of the data which is currently in
memory. Downloading data is performed using the readdata command on dataset-1.

5.1.2 EasyParse format

Loggers may also support a data format known colloquially as 'EasyParse', and formally as 'calbin00'. In EasyParse
format, each of the three major types of deployment information is stored in its own separate dataset. This has the
benefit that parsing two of the three types (sample data and events) can be greatly simplified, with the penalty that a
single download operation will not produce a complete, self-contained deployment record: if this is a requirement, it
becomes the responsibility of the user and/or host software.

The assigment of datasets to the stored information is as follows:

the deployment header is in dataset 2,

Unless stated otherwise, all the numbers stored in the logger's memory are stored in little-endian format.

RBR#0005199revL - 181

2.
3.

the sample data is in dataset 1, and
events are in dataset 0.

The readdata command acting on each of these three datasets as required is used to download the information: use
the memformat type command to determine the format of the data currently in memory. Host applications using the
EasyParse format may elect not to download the deployment header at all; if only a small subset of the information it
contains is needed, it may be easier to determine that using other logger commands.

RBR#0005199revL - 182

1.

2.

3.

5.2 EasyParse "calbin00" format

5.2.1 EasyParse format
In EasyParse format (calbin00), dataset-1 contains only sample data, comprising sample sets recorded in chronological
order. The format of an individual sample set is also quite different from that of Standard format. Every sample set
includes a timestamp, and values are already converted to the physical values of the required parameters according to
the logger's calibration, with correction or compensation already applied as necessary. They are also stored in a
different numeric format, with error codes still accommodated when required. Refer to the following sections for more
details.

The logger can also store derived channels such as depth or salinity, which have no corresponding 'raw' value in the
Standard data format.

These characteristics make the data easier for host software to interpret:

All stored items are sample sets, with the size fixed for a given logger deployment; 8 bytes for a
timestamp, plus 4 bytes for each channel stored.
Host software does not need to do any calculation or need to know the logger's calibration data; final
values are stored directly by the logger.
Derived channels are already included.

Sample timing
Sample sets are individually time-stamped; while this consumes memory, it does also mean that timing information is
always available for snippets of downloaded data.

Each timestamp is a 64-bit (8-byte) unsigned integer, representing the number of milliseconds elapsed since 1970-
Jan-01 00:00:00. This is a format commonly used by Unix-based computer systems, in which leap years are correctly
accounted for, but each day is assumed to contain exactly 86400 seconds; there is no allowance for leap seconds or
other obscure adjustments. The logger takes no account of time zones or daylight savings adjustments.

If a sample set is the result of an average or a bin, the timestamp reflects the timestamp of the first measurement of the
average or bin.

Normal reading values
Each individual reading of the sample data is stored as a 32-bit (4-byte) floating point number in IEEE-754 single
precision format. Both measured and derived channels are included in the sample set, with channels ordered as
expected according to the results of the channel command. The values are the final computed output for each channel,
including all necessary corrections and cross compensations. If an error occurs on an individual channel in a sample set,
that channel will be reported as an IEEE-754 'NaN' (Not a Number): see below for more details.

Error Codes
Under some conditions an error may occur on one channel while data from the other channels is perfectly acceptable.
Rather than generating a time-stamped event if this happens, the individual reading is replaced by an error code.

RBR#0005199revL - 183

In EasyParse format, an error code is stored as an IEEE-754 'NaN' (Not a Number), which is compatible with the floating
point format of the sample readings, without being a valid value. An error code indicates a problem with that particular
reading from the channel in question; other readings in the same sample set may be fine, as may other readings from
the same channel in different sample sets.

IEEE-754 provides for multiple NaN values, and this feature is used to encode the nature of the error, although it is
acknowledged that host software taking advantage of the simplicity of the EasyParse format will probably not delve
into this level of diagnostic detail. The general format is (0xFF800000 + <EC>), where 0xFF800000 is the base value of an
IEEE-754 NaN, and <EC> is the error code. The values of <EC> correspond, where possible and appropriate, to the error
numbers also used in Standard data storage format.

Error # Hex Code Description

- 0xFF800001 internal computation failure (eg. divide-by-zero)
- 0xFF800002 unable to compute value, channel not calibrated

0 0xFF810000 generic, unknown or unexpected error
1 0xFF810001 EOC bit unexpectedly set in ADC output
2 0xFF810002 DMY bit unexpectedly set in ADC output
3 0xFF810003 internal addressing error
4 0xFF810004 too much data for internal transfer
5 0xFF810005 access to internal bus denied
6 0xFF810006 timeout sending internal command
7 0xFF810007 timeout receiving internal response
8 0xFF810008 generic failure to interpret response
9 0xFF810009 no sample was started
10 0xFF81000A sample acquisition still in progress
11 0xFF81000B sample process failed
12 0xFF81000C no valid samples to average
13 0xFF81000D internal response unexpectedly short
14 0xFF81000E supporting channel value not valid, or unknown

equation
15 0xFF81000F (reserved)
16 0xFF810010 channel value is outside reasonable range
17 0xFF810011 channel value is below minimum measurable limit
18 0xFF810012 channel value is above maximum measurable limit
19 0xFF810013 sensor output not received within timeout
20 0xFF810014 unable to parse sensor output
21 0xFF810015 channel is not correctly calibrated
22 0xFF810016 floating point value is badly formed
23 0xFF810017 channel not logged

RBR#0005199revL - 184

1.
2.
3.
4.

5.2.2 EasyParse
Events are records of non-sample incidents, and can be used to aid interpretation of the deployment data, or for
diagnostic purposes. EasyParse events are stored in dataset-0, separate from the sample data in dataset-1.

In EasyParse format, all events have the same structure; this helps to make the stream of events easier to parse because
they all have the same, fixed size: 16-bytes. Compared to Standard events, the format of the timestamp is different, and
all events have an extended data field, or payload. If the payload is not applicable to a particular event type, its content
is not defined, and no attempt to interpret it should be made.

For consistency, the Type Codes are the same as used for Basic (F7) and Extended (F5) events in Standard data storage
format, and all are listed below for completeness. However, note that some type codes should never be encountered in
EasyParse events; for example, 0x01 used for time synchronization is completely redundant, as all samples and events
have their own timestamp.

Bytes 0,1 16-bit byte-swapped CCITT CRC of Bytes 2..15
Byte 2 Type Code
Byte 3 0xF4 marker byte
Bytes 4..11 64-bit unsigned number of milliseconds since 1970-01-01 00:00:00
Bytes 12..15 32-bit (4-byte) payload dependent on 'T ype Code'
The event payloads depend on the event Type Code:

Most event types have no payload and the content is not defined; it should be ignored.
A separate time-stamp field for milliseconds is redundant and never used.
For regime bin events (0x20), the payload is the number of reading values in the reported average.
For cast events, the payload is the address of the sample in dataset-1, where the actual sample data is
stored.

Hex Code Description Payload

0x00 Unknown or unrecognized events undefined
0x01 Time synchronization marker undefined
0x02 stop command received undefined
0x03 Run-time error encountered undefined
0x04 CPU reset detected undefined
0x05 One or more parameters recovered after reset undefined
0x06 Restart failed : Real Time Clock/Calendar

contents not valid
undefined

0x07 Restart failed : logger status not valid undefined
0x08 Restart failed : primary schedule parameters

not be recovered.
undefined

0x09 Unable to load alarm time for next sample undefined
0x0A Sampling restarted after resetting Real Time

Clock (RTC)
undefined

In the case of event 0x23 (End of profiling cast), the sample address given is that of the next sample, ie. the first
sample which is not in the cast.



RBR#0005199revL - 185

Hex Code Description Payload

0x0B Parameters recovered, sampling restarted
after resetting RTC.

undefined

0x0C Sampling stopped, end time reached undefined
0x0D Start of a recorded burst undefined
0x0E Start of a wave burst undefined
0x0F (reserved) undefined
0x10 Streaming now OFF for both ports undefined
0x11 Streaming ON for USB, OFF for serial undefined
0x12 Streaming OFF for USB, ON for serial undefined
0x13 Streaming now ON for both ports undefined
0x14 Sampling started, threshold condition satisfied undefined
0x15 Sampling paused, threshold condition not met undefined
0x16 Power source switched to internal battery undefined
0x17 Power source switched to external battery undefined
0x18 Twist activation started sampling undefined
0x19 Twist activation paused sampling undefined
0x1A WiFi module detected and activated undefined
0x1B WiFi module de-activated; removed or activity

timeout
undefined

0x1C Regimes enabled, but not yet in a regime undefined
0x1D Entered regime 1 undefined
0x1E Entered regime 2 undefined
0x1F Entered regime 3 undefined
0x20 Start of regime bin number of readings in average; see note below
0x21 Begin profiling 'up' cast address of sample in dataset-1
0x22 Begin profiling 'down' cast address of sample in dataset-1
0x23 End of profiling cast address of first sample not in cast
0x24 Battery failed, schedule finished. undefined
0x25 Directional dependent sampling, beginning of

fast sampling mode
undefined

0x26 Directional dependent sampling, beginning of
slow sampling mode

undefined

0x27 Energy used marker, internal battery energy consumed from power source since last
accumulator reset

0x28 Energy used marker, external power source energy consumed from power source since last
accumulator reset

0x29 Device control action result result of control action

Logger configuration may also include a derived data channel, type cnt_00, which contains the same value as
event 0x20 when in the regimes sampling mode. The benefit of turning it on when storing data in EasyParse
format is that the value is then available in the main sample data in dataset-1; the dataset containing these
events does not have to be retrieved. Refer to the Section "Integrating with a profiling float" for further
details.



RBR#0005199revL - 186

1.

2.

5.3 Standard "rawbin00" format

5.3.1 Deployment Header
The deployment header is the first thing stored in memory by the data logger; it is written at the time of a successful
enable command, and contains meta-information about the deployment and about the logger.

The details of the header contents do not depend on the data storage format used; only the location of the header is
affected:

in Standard format (rawbin00), the header is stored at the beginning of dataset-1, prior to any sample
data or events.
in EasyParse format (calbin00), the header is stored in dataset-2 by itself. This header is not necessary
for complete EasyParse downloads.

The section which follows describes only the current version; in general, newer versions contain only additions to
previous versions. A brief history of the versions is given below.

Version Brief description of changes Main related command

2.003 Section 6 (devices) includes segmented schedule
table for BPR|zero

valve, valvesegments, valvesegment

2.002 Added Section 6 for details of installed devices valve
2.001 Added an internal parameter to Section 2 n/a
2.000 Original release of this overall format. n/a

Version 2.003

Introduction

More recent header versions are always backward compatible with previous versions, in the sense that while new
material may be added, existing content and the layout of existing content is not changed. The following table lists all
versions of the header, the version of firmware in which it was first introduced, and a brief description of the change.

Header
version

Firmware
version

Comment

2.003 1.142 Device section includes segmented schedule table
for BPR|zero

2.002 1.115 (Note 1) Added Device section (Section Id 0x06) for BPR|zero
and UV-LED

2.001 1.080 Added an internal parameter to Section 2
2.000 1.000 Original release

Notes

RBR#0005199revL - 187

1.
2.
3.
4.
5.
6.

Overview
The header is composed of a series of sections followed by a global CRC. Each section describes some aspect of the
instrument configuration or deployment settings. Sections should be in ascending order by Section Id value. The
'metadata' section describes the data format itself.

Header

Field Length Notes

Metadata
section

9 bytes The metadata section is always the first section in the header, and currently has a fixed
size

Other sections variable
CRC 2 bytes 16-bit CRC using the CCITT polynomial f(x) = x^16 + x^12 + x^5 + 1. Header bytes are fed

into the LSB of the generator.
Each section is organized as:

Section structure

Field Length Notes

Section Id 1 byte Section Id identifies the kind of information stored in this section

0x01 Metadata section
0x02 Logger section
0x03 Deployment section
0x04 Non deployment related settings section
0x05 Channels section
0x06 Devices section

Length 2 bytes This is the total length of the section (including Section Id, Length and Content fields)
Content (Length - 3)

bytes
The content of each section is described below. If there are any unused bytes, they are set
to 0xFF.

Metadata section content (Section Id 0x01)

Version (4 bytes)
For example, 2002; this is the version of the header format

Total header length (2 bytes)
This length includes all the sections of the header and the CRC at the end.

Logger section content (Section Id 0x02)

Firmware type
The firmware type code as an 32b integer; see the fwtype parameter under the id command.

1. Prior to Version 1.130, only specific versions of the firmware include support for the BPR|zero
product; there will be some versions of firmware that do not include a Section 6 at all, so do not
assume that it will be present but empty.

https://docs.rbr-global.com/display/L2DOC/id

RBR#0005199revL - 188

Firmware version
Given as an integer; for example version 1.570 would be given as 1570.

Logger Serial Number
As reported by the id command.

Logger model (16 bytes)
NUL terminated string reflecting the model name. Padded with 0xFF bytes.

Logger P/N length (2 bytes)
Size in bytes of the logger P/N string (including the NUL character).

Logger P/N string (Logger P/N length bytes)
NUL terminated string reflecting the P/N.

Power supply P/N length (2 bytes)
Size in bytes of the power supply P/N string (including the NUL character).

Power supply P/N string (Power supply P/N length bytes)
NUL terminated string reflecting the power supply P/N.

Reserved (8 bytes)

Deployment section content (Section Id 0x03)

Dataset format
0x00000000 rawbin00
0x00000001 calbin00

Logger date/time
This is the date and time at which the enable command was successfully executed by the logger and the Header
stored in memory. The value is the number of seconds elapsed since 2000-Jan-01 00:00:00, (946684800 Unix
timestamp).

Schedule start time
Programmed by the deployment starttime command. The value is the number of seconds elapsed since 2000-
Jan-01 00:00:00, (946684800 Unix timestamp).

Schedule end time
Programmed by the deployment endtime command. The value is the number of seconds elapsed since 2000-
Jan-01 00:00:00, (946684800 Unix timestamp).

Measurement interval
Programmed by the sampling period command. The value is given in milliseconds.

Logger status
This is the logger's status when it was successfully enabled, and so can have only a small number of values: 1
= pending, 2 = logging, or 4 = gated. See also the deployment status command.

Feature flags
This is a bitmask of user selectable features which were active at the time the logger was enabled.
0x00000001 1 = logger prompt turned on.
0x00000002 1 = logger confirmations turned on.
0x00000004 1 = stream sample data to USB port.

RBR#0005199revL - 189

0x00000008 1 = stream sample data to serial port.
0x00000010 1 = store average of burst.
0x00000020 1 = store all measurements in burst.
0x00000040 1 = store tidal average of burst.
0x00000080 1 = store wave burst.
0x00000100 1 = fast (>1Hz) continuous sampling.
0x00000200 Reserved
0x00000400 1 = firmware updates are locked
0x00000800 Reserved
0x00001000 1 = valve schedule started with no delay (if supported by firmware)
0x00002000 1 = valve schedule enabled (if supported by firmware)
0x00004000 1 = sampling was gated by thresholding feature.
0x00008000 1 = logger keeps all sensor channels powered up between samples.
0x00010000 1 = sampling was gated by the twist activation feature.
0x00020000 1 = the regimes sampling mode was enabled.
0x00040000 1 = cast detection for profiling deployments was enabled.
0x00080000 1 = the serial port auxiliary control feature was enabled.
0x00100000 1 = logger was enabled in simulated data mode.
0x00200000 1 = the directional dependent sampling mode was enabled.
0x00400000 1 = the WiFi link was enabled.

Burst/average interval
Measured in milliseconds, this is the time between recorded bursts.

Burst/average length
A count of the number of measurements in a recorded burst.

Thresholding channel index
The channel monitored for threshold-gated sampling, if enabled (see Feature flags above).

Thresholding condition
The condition which must be satisfied for the logger to record data if threshold-gated sampling was enabled (see
the Feature flags above). A value of 0 is used when the reading must be below the threshold for sampling to occur,
a value of 1 is used if the reading must be above the threshold.

Thresholding value
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. It is the threshold value
in calibrated units, used for comparison with values from the monitored channel, if threshold-gated sampling was
enabled (see the Feature flags above).

Thresholding interval
This is the interval in milliseconds between threshold checks when the logger is in the gated state, waiting for a
threshold trigger.

Regimes settings
bit 7 : 0 = ascending, 1 = descending
bit 6 : 0 = absolute pressure reference, 1 = sea pressure reference
bits 0..5 : number of regimes (between 1 and 3)

Regime 1 boundary (2 bytes)
The boundary is in dbar.

Regime 1 binsize (2 bytes)
The binsize is in dbar.

Regime 1 period
The sampling period during this regime in milliseconds

RBR#0005199revL - 190

Regime 2 boundary (2 bytes)
The boundary is in dbar.

Regime 2 binsize (2 bytes)
The binsize is in dbar.

Regime 2 period
The sampling period during this regime in milliseconds

Regime 3 boundary (2 bytes)
The boundary is in dbar.

Regime 3 binsize (2 bytes)
The binsize is in dbar.

Regime 3 period
The sampling period during this regime in milliseconds.

Reference pressure for WiFi module, if installed
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. It represents the
pressure in dbar assumed to apply at the surface of the water at the start of the deployment.

Offset from Universal Coordinated Time (UTC)

This parameter represents an offset in hours from UTC in the local timezone when the logger was deployed, if that
information was provided by the host software. This item is a floating point number in IEEE 32-bit (single
precision) format, not an integer. This format allows offsets which include partial hours, for those time zones
which need it. If the timezone is never explicitly set, or is erased by using the clock command to update the date/
time, it will be reported as a NaN ('Not a Number' in IEEE floating point format).

Simulated data cycle period
When a logger is enabled in simulation mode, the simulated data is periodic, with the period usually being much
longer than the sampling period. The cycle period of the simulated data is given as an unsigned 32-bit integer in
milliseconds. For example, a value of 3600000 represents a period of one hour .

Directional dependent sampling flags
This is a bitmask of settings for directional dependent sampling.
0x00000001 1 = ascending direction, 0 = descending direction.

Directional dependent fast sampling period
The fast sampling period in milliseconds.

Directional dependent slow sampling period
The slow sampling period in milliseconds.

Directional dependent fast sampling threshold
The fast sampling threshold in dbar, this item is a floating point number in IEEE 32-bit (single precision) format,
not an integer.

Directional dependent slow sampling threshold
The slow sampling threshold in dbar, this item is a floating point number in IEEE 32-bit (single precision) format,
not an integer.

Battery type, internal
An integer encoding the type of the internal battery as set by the powerinternal batterytype command, and as
represented in the following table, which also shows the nominal Battery capacity for each battery type.

Battery type code Type name

0 none
1 (reserved)

RBR#0005199revL - 191

Battery type code Type name

2 lisocl2
3 lifes2
4 znmno2
5 linimnco
6 nimh

Battery type, external
An integer encoding the type of the internal battery as set by the powerexternal batterytype command, and as
represented in the following table, which also shows the nominal Battery capacity for each battery type.

Battery type code Type name

100 other
101 fermata_lisocl2
102 fermata_znmno2
103 fermette_limno2
104 fermette3_lisocl2
105 fermette3_lifes2
106 fermette3_znmno2
107 fermette3_linimnco
108 fermette3_nimh

Battery capacity, internal
This is an IEEE 32-bit (single precision) floating point number representing the nominal total energy capacity in
Joules of the indicated internal Battery type; see above.

Battery capacity, external
This is an IEEE 32-bit (single precision) floating point number representing the nominal total energy capacity in
Joules of the indicated external Battery type; see above.

Energy used from internal battery
This is an IEEE 32-bit (single precision) floating point number representing an estimate of the total energy in
Joules removed from the internal battery since the value was last reset (zeroed).

Energy used from external battery

This is an IEEE 32-bit (single precision) floating point number representing an estimate of the total energy in
Joules used from the external power source since the value was last reset (zeroed).

Energy consumption parameter e1
This is an IEEE 32-bit (single precision) floating point number representing an estimate of the energy in Joules
required to take a single power-cycled sample .

Energy consumption parameter p1
This is an IEEE 32-bit (single precision) floating point number representing an estimate of the power in Watts
used by the logger in sleep mode.

Energy consumption parameter p2

RBR#0005199revL - 192

This is an IEEE 32-bit (single precision) floating point number representing an estimate of the power in Watts
used by the logger when sampling while continuously powered on.

Energy consumption parameter p3
This is an IEEE 32-bit (single precision) floating point number representing an estimate of the power in Watts
used by the logger while using an alternative communications link such as WiFi.

[Other energy consumption parameters may be present; see below. They are not grouped together in order to
keep the header layout compatible between different firmware versions.]

Specific Conductivity Temperature Coefficient
This parameter is used when correcting conductivity readings to 25 °C for the specific conductance derived
channel. The value of the coefficient varies slightly depending on the ionic composition of the water, and is
typically in the range 0.0191 to 0.0214. The default value is 0.0191, suitable for standard KCl solutions . This item
is a floating point number in IEEE 32-bit (single precision) format, not an integer .

Temperature default value
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. The units must be
Celsius.

Pressure default value
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. The units must be
dbar.

Atmospheric pressure default value
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. The units must be
dbar.

Density default value
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. The units must be kg/
m3.

Salinity default value
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. The units must be PSU.

Average sound speed default value
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. The units must be m/s.

Altitude default value
This item is a floating point number in IEEE 32-bit (single precision) format, not an integer. It represents the height
above the sea bed at which the logger is deployed. The units are not specified, although RBR Ltd's host software
Ruskin expects the value to be in metres. This parameter is meaningful only for instruments configured to record
wave bursts; see also the settings command.

Energy consumption parameter p4
This is an IEEE 32-bit (single precision) floating point number representing an estimate of the power in Watts
used by the logger while an installed 'device' is active. Current examples of 'devices' include the UV-antifouling
feature and the valve controller for the BPR|zero system.

Non deployment related settings section content (Section Id 0x04)

Output format
This is the output format used for streamed or fetched data. See also the outputformat command.
 - 00 caltext01 format,
 - 01 caltext02 format,
 - 02 caltext03 format,
 - 03 caltext04 format

RBR#0005199revL - 193

Serial link baudrate
This is the baudrate in force on the logger's serial link when the logger was enabled.

Serial mode
The operating mode of the Serial port as an integer code; see the mode parameter under the serial command:

0: (rs232) standard RS-232.
1: (rs485f) full duplex RS-485.
2: (uart) direct connection to UART 3V logic.
3: (uart_idlelow) inverted connection to UART 3V logic.
4: (rs485h) half duplex RS-485.

Auxiliary serial control output; polarities
Determines the active polarity of the signal when the logger is awake, and the state of the signal when the logger is
asleep:

b0: 0 = logger drives signal low to activate, 1 = logger drives signal high to activate.
b1: 0 = signal is low when logger is asleep, 1 = signal is high when logger is asleep.
b2: 0 = b1 controls signal level when logger is asleep, 1 = signal is high impedance when logger is asleep.

Auxiliary serial control output; setup time
The time in milliseconds for which the control signal is activated before the logger starts to stream data over the
Serial link.

Auxiliary serial control output; hold time
The time in milliseconds for which the control signal is held active after the logger has finished streaming data
over the Serial link.

Power-on timeout for WiFi module, if installed

After activating the WiFi module, the logger will wait for this number of seconds at the most for a valid command
to be received. If the timeout expires, the WiFi module will be deactivated again.

Command timeout for WiFi module, if installed

After receiving a valid command, the logger will wait for this number of seconds at the most for another. If the
timeout expires, the WiFi module will be deactivated.

Fetch power off delay
This is the timeout in milliseconds before the sensors are powered off after sending the fetch command.

Channel section content (Section Id 0x05)

Number of channels
As reported by the channels command, (1 byte)

Channel 1 offset
Channel 1 details offset from beginning of the channel section structure, (2 bytes)

Channel 2 offset (2 bytes)

 ...

Channel N offset (2 bytes)

[Channel_1 details structure] (variable size, depends on channel type and number of calibration coefficients)

[Channel_2 details structure] (variable size...)

 ...

[Channel_N details structure] (variable size...)

https://docs.rbr-global.com/display/L2DOC/serial

RBR#0005199revL - 194

•
•
•
•
•

Channel details structure

Type (6 bytes)
This is a 6-character ASCII string as reported by the channel command. See Supported channel
types for a list of possible values

Label (32 bytes)

This is a character ASCII string NUL terminated. If label is not set, all bytes are set to 0xFF.

Module fwtype (32 bytes)

This is a character ASCII string NUL terminated. If the fwtype is unknown, all bytes are set to 0xFF.

Firmware version

Given as an integer; for example version 1.570 would be given as 1570.

Channel extensions (2 bytes)
This 16-bit field stores specific flags for the channel.
The first five bits are used internally by the logger to control the properties and behaviour of a channel
which has been turned off using the channel status command. The bits are assigned as follows:

bit-0: 0 if the channel is visible, 1 if it is hidden.
bit-1: 0 if the channel is sampled, 1 if it is ignored.
bit-2: 0 if the channel data is stored in memory, 1 if it is transient.
bit-3: 0 if the channel data may be streamed, 1 if it is quiet.
bit-4: 0 if the channel is "on", 1 if the user requested it be turned "off".

These bits are not directly accessible to users via the command interface, and are really only for the
logger's internal use: not all possible combinations are valid. Turning a channel "off" is not as simple as
it may seem; for example, if the user requests a channel is turned off, but its data is required for the
correction of another channel, the logger must still sample the channel without necessarily storing or
streaming the data. These bits provide the detailed control necessary to deal with such scenarios.

The visible/hidden property is configured at the Factory and can not be changed or read by the user. A
channel may be hidden if it is required by the logger but is of no interest to the user; an example might
be an internal temperature needed for correction purposes.

Calibration Date (4 bytes)
Retrieved by the calibration command. The value is the number of seconds elapsed since 2000-Jan-01
00:00:00.

Number of coefficients (1 byte)
The number of channel calibration coefficients.

Coefficient 1 (4 bytes)
This item is typically a floating point number in IEEE 32-bit (single precision) format, not an integer.

Coefficient 2 (4 bytes)

 ...

Coefficient N (4 bytes)

All true coefficients are floating point numbers in IEEE 32-bit (single precision) format.
Coefficients appear in ascending order in the following manner: C-coefficients first, then X-coefficients,
then N-coefficients.
Refer to the calibration command for more details.

RBR#0005199revL - 195

Channel specific structures total size (2 bytes)
Applies to channels with gain settings, sensor key/value pairs, or other channel-specific
information. This is the total size of all the channel-specific structures.

Channel specific structures
Applies to channels with gain settings, sensor key/value pairs and specific frontends.

This is a list of specific structures which applies to a channel. Each structure starts with an header:

Channel specific structure

Field Leng
th

Notes

Type (1 byte) an integer indicating the type of information stored.
Length (2 byte) This is the total length of the channel specific structure (including Type, Length

,Spare and Content fields.
Spare (2 byte) Always 0.
Content (Length

-5)
The content of this field is specified below for each type.

Channel specific structure Type 2 Content- Key/value pair attached to sensor command

Field Len
gth

Notes

Sensor
Key

(variable
)

Stored as a sequence of lower-case ASCII characters, ending with a NUL
character (byte value of 0). This may be padded after the NUL if necessary with
up to three bytes of value 127 (0x7F), so that the total size of the name entry in
bytes is a multiple of four.

Sensor
Value

(variable
)

Stored as a sequence of lower-case ASCII characters, ending with a NUL
character (byte value of 0).This may be padded after the NUL if necessary with
up to three bytes of value 127 (0x7F), so that the total size of the name entry in
bytes is a multiple of four.

Channel specific structure Type 3 Content - Channel gain control

Field Lengt
h

Notes

Ranging
mode

(1 byte) This is the status of the gain control on the sensor card. It can have only one
of two values: 1 = manual , 2 = auto . See also the channel <index>
gain command.

Number of
available
gains

(1 byte) This is the number of possible gains available.

Current Gain
value

(4 bytes) This is the gain currently in use at time of deployment. If the ranging mode
is auto then this value is the first gain in the Available gain 1 . If the ranging
mode is manual then this value will be the manual gain setting chosen by
the user at the time of deployment. This item is a floating point number in
IEEE 32-bit (single precision) format, not an integer.

RBR#0005199revL - 196

Channel specific structure Type 3 Content - Channel gain control

Field Lengt
h

Notes

Available
gain 1

(4 bytes) This is one possible gain value available to the sensor. This is an IEEE 32-bit
(single precision) floating point number.

...
Available
gain n

(4 bytes) This is one possible gain value available to the sensor. This is an IEEE 32-bit
(single precision) floating point number.

Device section content (Section Id 0x06)

This section will not appear in header versions earlier than 2.002. In future, for versions 2.002 or later, if there are no
devices configured in the instrument this section may either be a) not present at all, or b) present, but indicate that zero
devices are installed, in which case there will be no supporting data to follow.

Number of devices
(1 byte) Number of devices configured in the instrument.

Device 1 offset
(2 bytes) Offset of the details for Device 1, from the beginning of the device section.

Device 2 offset

(2 bytes) Offset of the details for Device 2, from the beginning of the device section.

 ...

Device N offset

(2 bytes) Offset of the details for Device N, from the beginning of the device section.

[Details for device 1]

(Variable size) Depends on the type of device installed.

[Details for device 2]

(Variable size) Depends on the type of device installed.

 ...

[Details for device N]

(Variable size) Depends on the type of device installed.

Padding

Following the Details for device N section there will be from 0 to 3 bytes of padding to bring the total size of the
entire deployment header up to a multiple of four bytes, if necessary. These bytes are included in the size byte-
count for this section, as well as the size byte-count for the complete deployment header, but they serve no other
purpose and their value is not defined. Currently, this padding appears only in the Device section, Section 6;
deployment headers which do not have this section are not padded in the same way, and in general their size will
not be a multiple of four bytes.

RBR#0005199revL - 197

Structure of details for each device

Type
(1 byte) This is a byte code which identifies the type of device installed. An unknown or unidentified device
has the code 255 (0xFF).

Module address
(1 byte) This is the internal FE-bus address of the module that interfaces to the device itself.

Reserved
(2 bytes)

Label
(24 bytes) This is a NUL-terminated ASCII character string. If no label has been set, all bytes will be 0xFF.

Module firmware type
(32 bytes) This is a NUL-terminated ASCII character string. If the firmware type is unknown, all bytes are set
to 0xFF.

Module firmware version
(4 bytes) Given as a 32b integer; for example version 1.570 would be given as 1570.

Control and status flags
(2 bytes) The following flags are currently defined:

Flag Function

Bit 0 1 = User commands to the device are enabled (always true)
Bit 1 1 = Scheduled operation of the device is enabled
Bit 2 1 = Scheduled operation starts with no delay
Bit 3 1 = Store device-related events in memory during deployment
Bit 4 1 = Device schedule is segmented (f/w version 1.142 or later)
Bit 5 1 = interval, duration parameters stored internally in seconds (f/w version

1.142 or later)
Interval between scheduled device episodes
(4 bytes) An unsigned 32b integer giving the time between scheduled device episodes in milliseconds /
seconds (see Bit 5 flag above).

Duration of scheduled device episodes
(4 bytes) An unsigned 32b integer giving the duration of each scheduled device episode in milliseconds /
seconds (see Bit 5 flag above).

Power on delay
(4 bytes) An unsigned 32b integer giving the delay in milliseconds between powering up the external device
and sending it any commands.

Power off guard time
(4 bytes) An unsigned 32b integer giving the delay in milliseconds between sending the last command to the
external device and removing its power.

RBR#0005199revL - 198

1.
2.
3.

Size of device
(2 bytes) Indicates how many bytes of additional information follow, if any; these are specific to this
particular type of device .

Device-specific details
(N bytes) Additional information specific to this type of device; the value of 'N' is indicated by the preceding
size parameter.

5.3.2 Standard format
Following the deployment header in memory is the deployment data, which will contain both sample data and events,
recorded in chronological order. Events are time-stamped records of any notable incidents apart from sample data.
Both sample data and events have their own formats; refer to the following sections for details.

Sample data should always be stored as complete sets of readings, one set comprising one reading from each active
channel, all taken at the same time. However, it may be possible under some fault conditions for only a partial sample
set to be stored. It is therefore important when parsing data to check for, and be able to identify, event markers at every
reading, not just at the assumed start of every sample set. However, partially stored sample sets are extremely rare, and
for the remainder of this discussion we will assume for simplicity that all sample sets are complete.

Sample timing
Sample sets are not individually time-stamped; only events contain any explicit date and time information. This avoids
'wasting' memory by time-stamping samples which are regular and predictable, but the date and time must be
calculated by counting sample sets from the previous time-stamped event, and applying the programmed parameters
for the schedule, such as the measurement period and the burst interval, if applicable: refer to the sampling command
for details. At the very least, there should always be one time-stamped event in the deployment; immediately after the
header and before the first sample set.

Normal reading values
Each individual reading of the sample data is a signed 32-bit integer in 2's-complement format, in principle giving a
range from –2147483648 to +2147483647. However, not all of this range is fully utilized for sample data; in particular,
some parts of the range have been assigned for purposes such as event markers and error codes.

Individual reading values at present are typically confined to a sub-range of the full 32-bit range available, namely
−134217728 to +1073741760. Readings outside this range which are not:

defined as Event Markers (see the section Standard format events markers), or
defined as Error Codes (see below), or
known to originate from a sensor channel with specially defined properties,

should be treated with suspicion.

The readings for each channel are 'raw', unprocessed values from an A/D converter or some other type of data
acquisition hardware. They can not be interpreted as physical values of the measured parameter without further
processing according to the calibration equation and coefficients for the channel.

Error Codes
Under some conditions an error may occur on one channel while data from the other channels is perfectly acceptable.
Rather than inserting a time-stamped event in the data stream if this happens, the individual reading is replaced by an
error code.

RBR#0005199revL - 199

•
•

•
•

•
•
•
•

Error codes are 32-bit values which by definition should never appear as valid readings. They indicate a problem with
that particular reading from the channel in question; other readings in the same sample set may be fine, as may other
readings from the same channel in different sample sets.

The general format is 0xF6<EC><CRC>, where 0xF6 is the error code indicator in the MSB, <EC> is one of 256 possible
error codes, and <CRC> is the byte-swapped 16b CRC of the two bytes 0xF6,<EC>. Because the codes are all fixed, so are
the CRCs, and the table below simply shows the full 32-bit values for all error codes defined so far.

Error # Hex Code Description

0 0xF600D692 generic, unknown or unexpected error
1 0xF601E7A1 EOC bit unexpectedly set in ADC output
2 0xF602B4F4 DMY bit unexpectedly set in ADC output
3 0xF60385C7 internal addressing error
4 0xF604125E too much data for internal transfer
5 0xF605236D access to internal bus denied
6 0xF6067038 timeout sending internal command
7 0xF607410B timeout receiving internal response
8 0xF6087F1B generic failure to interpret response
9 0xF6094E28 no sample was started
10 0xF60A1D7D sample acquisition still in progress
11 0xF60B2C4E sample process failed
12 0xF60CBBD7 no valid samples to average
13 0xF60D8AE4 internal response unexpectedly short
14 0xF60ED9B1 supporting channel value not valid, or unknown

equation
15 0xF60FE882 (reserved)
16 0xF610A591 channel value is outside reasonable range
17 0xF61194A2 channel value is below minimum measurable limit
18 0xF612C7F7 channel value is above maximum measurable limit
19 0xF613F6C4 sensor output not received within timeout
20 0xF614615D unable to parse sensor output
21 0xF615506E channel is not correctly calibrated
22 0xF616033B floating point value is badly formed
23 0xF6173208 channel not logged

5.3.3 Standard format

Event structure
Event processing info byte

Type Codes
Auxiliary data

0x20 Regime bin event auxiliary data
0x23 End of profiling cast event auxiliary data
0x03 Runtime error event auxiliary data
0x27 Energy used marker, internal battery

RBR#0005199revL - 200

•
•

0x28 Energy used marker, external power source
0x29 Device control action result

Events are records of non-sample incidents, and can be used to aid interpretation of the deployment data, or for
diagnostic purposes.

In Standard format, events and sample data are stored together in chronological order in dataset-1. Sample data
should always be stored as complete sets of readings, one set comprising one reading from each active channel, all
taken at the same time. However, it may be possible under some fault conditions for only a partial sample set to be
stored. It is therefore important when parsing data in Standard format to check for event markers at every reading, not
just at the assumed start of every sample set.

Event structure

Bytes Description

Bytes 0 ... 1 16-bit byte-swapped CCITT CRC of Bytes 2 ... 7
Byte 2 Type Code
Byte 3 0xF3 marker byte
Bytes 4 ... 7 32-bit date/time in elapsed seconds format

Bytes 8 ... 9 16-bit count of milliseconds in current second [0 ... 999]
Byte 10 Size of event in uint32_t N
Byte 11 Event processing info
Bytes 12 ... (4 × N) - 1 Auxiliary data (for N > 3)

Event processing info byte

Bits Description

Bit 0 1: the timestamp of this event is the timestamp of the next following sample
set

0: the timestamp of this event does not affect the timestamp of the next
following sample set

Bits 1 ... 7 Unused

Type Codes

Type code Description

0x00 Unknown or unrecognized events
0x01 Time synchronization marker
0x02 disable command received
0x03 Run-time error encountered
0x04 CPU reset detected

Seconds for the date/time are counted from 2000-01-01T00:00:00Z.

RBR#0005199revL - 201

Type code Description

0x05 One or more parameters recovered after reset
0x06 Restart failed: real-time clock (RTC)/calendar contents not valid
0x07 Restart failed: logger status not valid
0x08 Restart failed: primary schedule parameters could not be recovered
0x09 Unable to load alarm time for next sample
0x0A Sampling restarted after resetting RTC
0x0B Parameters recovered; sampling restarted after resetting RTC
0x0C Sampling finished: deployment end time reached
0x0D Start of a recorded burst
0x0E Start of a wave burst
0x0F Power source switched to USB
0x10 Streaming now OFF for both ports
0x11 Streaming ON for USB, OFF for serial
0x12 Streaming OFF for USB, ON for serial
0x13 Streaming now ON for both ports
0x14 Sampling started, threshold condition satisfied
0x15 Sampling paused, threshold condition not met
0x16 Power source switched to internal battery
0x17 Power source switched to external battery
0x18 Twist activation started sampling
0x19 Twist activation paused sampling
0x1A Wi-Fi module detected and activated
0x1B Wi-Fi module de-activated; removed or activity timeout
0x1C Regimes enabled, but not yet in a regime
0x1D Entered regime 1
0x1E Entered regime 2
0x1F Entered regime 3
0x20 Start of regime bin
0x21 Begin profiling "up" cast
0x22 Begin profiling "down" cast
0x23 End of profiling cast
0x24 Battery failed, schedule finished
0x25 Directional dependent sampling, beginning of fast sampling mode
0x26 Directional dependent sampling, beginning of slow sampling mode
0x27 Energy used marker, internal battery
0x28 Energy used marker, external power source
0x29 Device control action result
0x2A Paused deployment resumed by the resume command
0x2B Deployment paused using the pause command

RBR#0005199revL - 202

Auxiliary data
Not all the events have embedded auxiliary data; here is a comprehensive list of those that do, with descriptions of the
embedded data.

0x20 Regime bin event auxiliary data

Bytes Description

Bytes 12 ... 15 Number of readings in the bin

0x21 Begin profiling "up" cast event auxiliary data

Bytes Description

Bytes 12 ... 15 32-bit (4-byte) address of the corresponding sample set

0x22 Begin profiling "down" cast event auxiliary data

Bytes Description

Bytes 12 ... 15 32-bit (4-byte) address of the corresponding sample set

0x23 End of profiling cast event auxiliary data

Bytes Description

Bytes 12 ... 15 32-bit (4-byte) address of the first sample set after the cast

0x03 Runtime error event auxiliary data

Bytes Description

Bytes 12 ... 15 32-bit (4-byte) firmware program address at which the error was
detected

0x27 Energy used marker, internal battery

0x28 Energy used marker, external power source

Bytes Description

Bytes 12 ... 15 32-bit (4-byte) IEEE float, energy consumed from power source since last
accumulator reset.

There is also a derived data channel, type cnt_00, which contains this value from event 0x20 when in the
regimes sampling mode. Refer to the Section "Integrating with a profiling float " for further details.



RBR#0005199revL - 203

0x29 Device control action result

Bytes Description

Byte 12 Primary data

Byte 13 Secondary data
Byte 14 RBR proprietary device type code
Byte 15 Undefined.
The primary data byte is defined by:

Byte value Description Example

0x01 Device episode startaction sent Move valve to Atmospheric position

0x02 Device episode endaction sent Return valve to Marine position
0x20 Manual activate-device command sent Turn UV-LEDs on
0x21 Manual deactivate-device command sent Turn UV-LEDs off
0xFD Start of schedule segment in segmented

mode
The secondary data byte is defined by:

Byte value Description

0x03 Command result - Success

0x04 Command result - Failed
0x05 Command result - Timeout
0x06 Command result - Error
0x80 Command result - Device-specific result
0x81 Command result - Device-specific result
0x01 ... 0x04 Index of segment started in segmented schedule mode

RBR#0005199revL - 204

5.4 Profile detection events generation
When the logger is configured with settings castdetection = on, it generates cast events in the recorded data
(see EasyParse format events markers and Standard format events markers).
There are basically three types of cast events: beginning of an upcast, beginning of a downcast and end of cast.

The following state machine is used to determine those events.

RBR#0005199revL - 205

6 Supported Channel Types
The following is a list of the channel types supported at the time of writing this document. These type names are used
by the channel command.

Type Equation Units Manufacturer Description

acc_00 linear g RBR Acceleration (in g's)
alti00 distancefromechotiming m RBR Distance from echo timing
baro00 linear double ps RBR Frequency counter[2]

baro01 linear double ps RBR Frequency counter[2]

baro02 deri_bprpres dbar Paroscientific/RBR BPR calculated pressure[2]

baro03 deri_bprtemp °C Paroscientific/RBR BPR calculated temperature[2]

bpr_08 deri_bprpres dbar Paroscientific/RBR BPR calculated pressure[2]

bpr_09 deri_bprtemp °C Paroscientific/RBR BPR calculated temperature[2]

cnt_00 none counts RBR Measurement count, useful for eg. regimes
bins

cond08 corr_cond3 μS/cm RBR Fresh water conductivity
cond09 corr_cond mS/cm RBR Marine conductivity
cond10 corr_cond mS/cm RBR Marine conductivity, Combined C.T cell
cond11 corr_cond1 mS/cm RBR Marine conductivity, Deep combined C.T

cell
cond12 corr_cond2 mS/cm RBR Marine conductivity, 2000dbar Combined

C.T cell
cond13 corr_cond3 mS/cm RBR Marine conductivity, RBRlegato C.T cell
cond14 corr_cond3 mS/cm RBR Marine conductivity, RBRsaildrone C cell
cond15 corr_cond3 mS/cm RBR Marine conductivity, UV Antifouling CTD
cond16 corr_cond3 mS/cm RBR Marine conductivity, 6000dbar C cell
cond17 corr_cond3 mS/cm RBR Marine conductivity, 6000dbar Combined

C.T cell
cond18 corr_cond3 mS/cm RBR Marine conductivity
cond19 corr_cond3 mS/cm RBR Marine conductivity, Combined C.T cell
cond21 corr_cond3 mS/cm RBR Marine conductivity, 2000dbar Combined

C.T cell
cond22 corr_cond3 mS/cm RBR Marine conductivity, RBRlegato C.T cell
cond24 corr_cond3 mS/cm RBR Corrected Marine

conductivity (inductive),transverse C.T
cell, Ti

cond25 corr_cond3 mS/cm RBR Corrected Marine conductivity (inductive),
transverse C.T cell, POM

doxy03 linear % Oxyguard Dissolved oxygen saturation

doxy07 linear % Aanderaa Optode: dissolved oxygen saturation, serial
doxy08 corr_rinkoB % JFE Advantech Rinko-III (B): dissolved oxygen saturation

with temperature

RBR#0005199revL - 206

Type Equation Units Manufacturer Description

doxy09 corr_rinkoBT % JFE Advantech/RBR Rinko-III (B): dissolved oxygen saturation
without temperature

doxy10 linear μmol/L Aanderaa Optode: dissolved oxygen concenration,
serial

doxy13 linear % RBR Dissolved oxygen saturation, serial
RBRsolo DO|rt

doxy22 deri_o2sat_garcia % RBR Dissolved oxygen saturation derived from
concentration via Gordon and Garcia

doxy23 corr_o2conc_garcia μmol/L RBR Dissolved oxygen concentration
compensated, serial RBRcoda ODO

doxy25 linear % Oxyguard Dissolved oxygen (saturation)
doxy27 corr_o2conc_garcia μmol/L RBR Dissolved oxygen concentration

compensated, serial RBRcoda ODO|slow
doxy28 corr_o2conc_garcia μmol/L RBR Dissolved oxygen concentration

compensated, serial RBRcoda ODO|fast
doxy32 corr_rinkoB2 % JFE Advantech Rinko-III (B): dissolved oxygen saturation

with temperature
doxy33 corr_o2conc_garcia μmol/L RBR Dissolved oxygen concentration

compensated, serial RBRcoda ODO, angled
dpth01 deri_depth m - Derived depth
echo01 lin ms RBR Echo timing
eco_00 lin counts WET Labs Generic channel for WET Labs ECO Triplet/

Puck sensors
fluo00 linear μg/L Seapoint Fluorometry-Phycoerythrin
fluo01 linear μg/L Seapoint Fluorometry-Chlorophyll
fluo02 linear μg/L Seapoint Fluorometry-Rhodamine
fluo03 linear μg/L Seapoint Fluorometry-UV/CDOM

fluo04 linear μg/L Seapoint Fluorometry-Phycocyanin
fluo10 linear μg/L Turner Designs Fluorometry-Chlorophyll-a
fluo11 linear ppb Turner Designs Fluorometry-CDOM
fluo12 linear ppb Turner Designs Fluorometry-Crude oil
fluo13 linear cells/mL Turner Designs Fluorometry-Cyanobacteria
fluo14 linear ppb Turner Designs Fluorometry-Optical brighteners
fluo15 linear ppb Turner Designs Fluorometry-Fluorescein
fluo16 linear ppb Turner Designs Fluorometry-Rhodamine
fluo17 linear ppb Turner Designs Fluorometry-Refined fuels
fluo18 linear ppm Turner Designs Fluorometry-BTEX

fluo19 linear cells/mL Turner Designs Fluorometry-Phycocyanin
fluo20 linear cells/mL Turner Designs Fluorometry-Phycoerythrin

fluo21 linear V Turner Designs Fluorometry-custom

fluo22 linear RFUB Turner Designs Chlorophyll a (C3)
fluo23 linear RFUB Turner Designs CDOM (C3)

RBR#0005199revL - 207

Type Equation Units Manufacturer Description

fluo24 linear RFUB Turner Designs Crude oil (C3)
fluo25 linear RFUB Turner Designs Cyanobacteria (C3)
fluo26 linear RFUB Turner Designs Optical brighteners (C3)
fluo27 linear RFUB Turner Designs Fluorescein dye (C3)
fluo28 linear RFUB Turner Designs Rhodamine dye (C3)
fluo29 linear RFUB Turner Designs Refined fuels (C3)
fluo30 linear RFUB Turner Designs BTEX (C3)
fluo31 linear RFUB Turner Designs Phycocyanin (C3)
fluo32 linear RFUB Turner Designs Phycoerythrin (C3)
fluo33 linear counts WET Labs Chlorophyll a (ECO Puck)
fluo34 linear counts WET Labs CDOM (ECO Puck)
fluo35 linear counts WET Labs Phycoerythrin (ECO Puck)
fluo36 linear counts WET Labs Rhodamine (ECO Puck)
fluo37 linear counts Turner Designs Fluorescence, minimum (Fo)
fluo38 linear counts Turner Designs Fluorescence, maximum (Fm)
fluo39 linear counts Turner Designs Fluorescence, variable (Fv)
fluo40 linear percent Turner Designs Fluorescence, yield
fluo41 linear μg/L Seapoint Fluorometry-Fluorescein
fluo42 linear counts WET Labs Chlorophyll a (ECO FLNTU)
fluo43 linear μg/L RBR Tridente Chlorophyll a
fluo44 linear ppb RBR Tridente fDOM
fluo47 linear counts WET Labs Phycocyanin (ECO Puck)
hdng00 linear degrees RBR Euler angle - heading
irr_00 optic2 μW/cm²/nm Satlantic Irradiance
irr_01 corr_irr V RBR Irradiance, 490nm
irr_02 corr_irr μW/cm²/nm RBR Irradiance, 475nm
irr_05 corr_irr2 μW/cm²/nm RBR Irradiance (analog sensor), generic
irr_06 linear μW/cm²/nm RBR Irradiance (serial sensor), generic
mag_00 linear μT RBR Magnetic field strength (in micro-Tesla's)
meth00 corr_metsmet μmol/L Franatech METS methane concentration
opt_07 linear ° RBR Calibrated phase output from RBRcoda

ODO
opt_14 linear ° RBR Calibrated phase output from RBRcoda

ODO|slow
opt_15 linear ° RBR Calibrated phase output from RBRcoda

ODO|fast
opt_24 linear ° RBR Calibrated phase output from RBRcoda

ODO, angled
orp_01 linear V Idronaut ORP (Oxidation/Reduction Potential)
par_00 linear μmol/m²/s Licor PAR (photosynthetically active radiation)
par_01 linear μmol/m²/s Biospherical PAR (photosynthetically active radiation)

par_03 optic2 μmol/m²/s Satlantic PAR (photosynthetically active radiation)

RBR#0005199revL - 208

Type Equation Units Manufacturer Description

par_05 corr_irr2 μmol/m²/s RBR PAR (photosynthetically active radiation),
analog sensor

par_06 linear μmol/m²/s RBR PAR (photosynthetically active radiation),
serial sensor

pco200 linear ppm Turner Designs C-sense CO2 partial pressure
peri00 linear double ps RBR Frequency counter[2]

peri01 linear double ps RBR Frequency counter[2]

ph__00 linear pH_units AMT pH
ph__01 linear pH_units Idronaut pH
ph__02 corr_ph pH_units Idronaut Corrected pH
phas00 linear degrees Aanderaa Calibrated phase output from serial AADI

Optode
pres08 deri_seapres dbar - Derived hydrostatic (sea) pressure
pres23 linear dbar RBR Pressure (absolute, temperature

compensated), serial RBRsolo D|rt,
RBRduet T.D|rt

pres24 corr_pres2 dbar RBR Pressure (absolute, temperature
compensated)

pres28 corr_pres5 dbar RBR Pressure (absolute, temperature
compensated)

pres29 corr_pres2 dbar RBR Pressure (absolute, temperature
compensated), UV Antifouling CTD

ptch00 linear degrees RBR Euler angle - pitch
roll00 linear degrees RBR Euler angle - roll
sal_00 deri_salinity PSU - Derived salinity, PSS78.
sal_01 deri_dyncorrS PSU - Derived salinity, PSS78 with applied

dynamic corrections for RBRargo 3 C.T.D
scon00 deri_speccond μS/cm - Derived specific conductivity
sos_00 deri_sos m/s - Derived speed of sound, UNESCO, Chen

and Millero
temp01 corr_rinkotemp °C JFE Advantech Temperature, Rinko-III
temp04 temp °C RBR Temperature (T-string)
temp06 corr_metstemp °C Franatech Temperature, METS
temp07 linear °C Aanderaa Temperature, from serial Optode
temp09 temp °C RBR Temperature
temp13 linear °C RBR Temperature, serial RBRsolo D|rt, RBRduet

T.D|rt
temp14 temp °C RBR Temperature, combined C.T cell

temp16 linear °C RBR Temperature, serial RBRcoda ODO
temp17 linear °C RBR Temperature, serial RBRcoda ODO|slow
temp19 temp °C RBR Temperature (fast)
temp22 temp °C RBR Temperature, compensating channel for

conductivity

RBR#0005199revL - 209

Type Equation Units Manufacturer Description

temp23 linear °C Campbell Temperature, OBS-501
temp26 temp °C RBR Temperature RBRlegato (1s)
temp27 temp °C RBR Temperature RBRlegato (fast response)
temp30 temp °C RBR Temperature, compensating channel for

irradiance (RBR 490nm Radiometer)
temp31 temp °C RBR Temperature, standard, UV Antifouling

CTD
temp32 temp °C RBR Temperature, standard, 6000dbar

Combined C.T cell
temp33 temp °C RBR Temperature, fast, 6000dbar Combined C.T

cell
temp34 temp °C RBR Temperature, compensating channel

for Marine C and CT 6000m
temp35 temp °C RBR Temperature, fast, transverse CTD
temp36 temp °C RBR Temperature, standard, transverse CTD
temp37 linear °C RBR Temperature, serial RBRcoda ODO, angled
temp38 deri_dyncorrT °C RBR Temperature with C-T lag correction

applied for RBRargo 3 C.T.D
temp40 linear °C RBR Tridente temperature
tran00 linear trans_units generic Transmittance[1]

tran01 linear % WET Labs Transmittance
tran02 linear V WET Labs Transmittance
tran03 linear 1/m Sequoia Transmittance
turb00 linear NTU Seapoint Turbidity
turb01 linear NTU Turner Designs Turbidity
turb02 linear NTU Campbell Turbidity, OBS3+
turb03 linear NTU Turner Designs Turbidity, C3 serial
turb04 linear counts WET Labs Backscatter, ECO Puck
turb06 cubic FTU Seapoint Turbidity, STM-S S-channel
turb07 cubic NTU Seapoint Turbidity, STM-S R-channel
turb08 linear NTU Campbell Turbidity, OBS-501 optical backscatter
turb09 linear NTU Campbell Turbidity, OBS-501 suspended solids
turb10 linear counts WET Labs Turbidity (ECO FLNTU)
turb11 linear V Sequoia Scientific Turbidity, LISST ABS acoustic backscatter
turb12 linear FTU RBR Tridente turbidity
turb13 linear FTU RBR Tridente turbidity
turb14 linear 1/m RBR Tridente backscatter
volt00 linear V generic Voltage (0V to +5V)
volt01 linear V generic Voltage (–2.5V to +2.5V)
volt02 linear V generic Voltage (0V to +10V)
volt03 linear V generic Voltage (–10V to+10V)

RBR#0005199revL - 210

1.
2.

Notes

Includes SeaTech and WET Labs.
bpr_08, bpr_09, peri00, and peri01 are calculated using double precision in order to
maintain resolution.



RBR#0005199revL - 211

7 Calibration Equations and Cross-channel Dependencies
The primary input to most equations is R, a raw number normalized to a nominal full scale of 1. This is typically a binary
reading from an A/D converter divided by a full scale value of 2^30, and so is often referred to as a 'voltage ratio', but
other input hardware and scale factors may be used.

A few equations for derived parameters use only secondary inputs from other channels; they have no underlying
measurement hardware, and so no R input. A good example would be salinity, which is a function of conductivity,
temperature, and pressure.

RBR#0005199revL - 212

7.1 Core Equations

The logger presently supports four 'core' equations with no cross channel dependencies, so they use only the c group of
coefficients; there are no terms using the x or n groups.

7.1.1 lin, or Linear

7.1.2 qad, or Quadratic

7.1.3 cub, or Cubic

7.1.4 tmp, or Temperature
Given in °C, based on the Steinhart-Hart equation used for thermistors.

where

and

RBR#0005199revL - 213

7.2 Specialized Equations
The logger also supports another group of equations with no cross channel dependencies, but they are typically used
for only a single type of sensor and have no general purpose application. Depending on the complexity of the equation,
they may use both c-group and x-group coefficients, but there are no cross channel reference indices in the n-group.

7.2.1 corr_rinkotemp - Temperature measured by a Rinko DO sensor
RBR data loggers support the integration of the Rinko-III dissolved oxygen (DO) sensor from JFE Advantech. In addition
to the raw DO sensing element, this sensor also provides an output representing temperature, for the purpose of
compensating the temperature dependence of the DO output. That compensation is described in a later section
(see Example 5: corr_rinko - Correction of Rinko Dissolved Oxygen using Rinko Temperature sensor); this section
describes how temperature is derived from the Rinko-III temperature output, which requires its own channel in the
logger in order to be monitored.

This is not strictly a 'corrected' output channel, as it has no dependence on any other channel in the logger. However it
does make use of the x-group of coefficients, commonly used by corrected channels, to describe the behaviour of the
logger electronics, whereas the primary coefficients in the c-group represent the behaviour of the sensor itself; it is
useful to keep them in separate groups.

The equation is:

where

The output of the temperature sensor is a voltage V, which is related to the logger's reported voltage ratio R by a simple
linear equation, the coefficients of which (x0,x1) are determined by RBR Ltd at the factory. The primary coefficients
c0...c3 are provided by JFE Advantech for the cubic polynomial which relates the voltage V to the temperature output T
in °C.

Examples

>> calibration 5 type
<< calibration 5 type = temp01

Confirm the channel type.

>> calibration 5 datetime = 20171201120000, c0 = -5.65608, c1 = 16.80047, c2 = -2.253705, c3 = 0.4827284

Set the core coefficients for the temperature output.

>> calibration 5 datetime = 20171201120005, x0 = 6.782656, x1 = -9.257345

Set the secondary coefficients for the voltage conversion.

RBR#0005199revL - 214

>> calibration 5
<< calibration 5 type = temp01, datetime = 20171201120005, c0 = -5.65608, c1 = 16.80047, c2 = -2.253705, c3 =
0.4827284, x0 = 6.782656, x1 = -9.257345

Request confirmation of all calibration coefficients.

7.2.2 corr_metstemp - Temperature measured by a METS (methane sensor)
RBR data loggers support the integration of the METS methane sensor from Franatech. In addition to the raw methane
sensing element, this sensor also provides an output representing temperature, for the purpose of compensating the
temperature dependence of the methane output. That compensation is described in a later section (see Example 10:
corr_metsmeth - Temperature correction of METS methane output); this section describes how temperature is
derived from the METS temperature output, which requires its own channel in the logger in order to be monitored.

This is not strictly a 'corrected' output channel, as it has no dependence on any other channel in the logger. However it
does make use of the x-group of coefficients, commonly used by corrected channels, to describe the behaviour of the
logger electronics, whereas the primary coefficients in the c-group represent the behaviour of the sensor itself; it is
useful to keep them in separate groups.

The equation is:

where

The output of the temperature sensor is a voltage V, which is related to the logger's reported voltage ratio R by a simple
linear equation, the coefficients of which (x0,x1) are determined by RBR Ltd at the factory. The primary coefficients
c0,c1 are provided by Franatech for the linear relation between the voltage V and the temperature output T in °C.

Examples

>> calibration 5 type
<< calibration 5 type = temp06

Confirm the channel type.

>> calibration 5 datetime = 20171201000000, c0 = -5.65608, c1 = 16.80047

Set the core coefficients for the temperature output.

>> calibration 5 datetime = 20171201000000, x0 = 6.782656, x1 = -9.257345

Set the secondary coefficients for the voltage conversion.

RBR#0005199revL - 215

•
•
•
•
•

>> calibration 5
<< calibration 5 type = temp06, datetime = 20171201000000, c0 = -5.65608, c1 = 16.80047, x0 = 6.782656, x1 =
-9.257345

Request confirmation of all calibration coefficients.

7.2.3 optic2 - optical parameters measured by a Satlantic OCR sensor
RBR data loggers support the integration of the Satlantic OCR-504 sensor for measurement of optical parameters such
as PAR, irradiance, and radiance.

This is not a 'corrected' output channel, as it has no dependence on any other channel in the logger. However it does
make use of the x-group of coefficients, as a convenient means of implementing an internal scale factor. The c-group
coefficients correspond directly to sensor coefficients provided by the manufacturer; the x0 coefficient is used only as
an internal scaling factor, and its value must not be changed.

The equation is:

where

R is the logger's reported voltage ratio,
x0 has the fixed value 2^32 (4294967296) and must not be changed.
c0 corresponds exactly to the Satlantic coefficient a0,
c1 corresponds exactly to the Satlantic coefficient a1
c2 corresponds exactly to the Satlantic coefficient Im.

Examples

>> calibration 5 type
<< calibration 5 type = irr_00

Confirm the channel type.

>> calibration 5 datetime = 20171201000000, c0 = 2147559862.6, c1 = 1.52173169935e-7, c2 = 1.161
<< calibration 5 datetime = 20171201000000, c0 = 2.1475600e+009, c1 = 152.17317e-009, c2 = 1.1610001e+000

Set the core coefficients for the sensor output.

>> calibration 5
<< calibration 5 type = irr_00, datetime = 20171201000000, c0 = 2.1475600e+009, c1 = 152.17317e-009, c2 =
1.1610001e+000, x0 = 4.2949670e+009

Request confirmation of all calibration coefficients.

RBR#0005199revL - 216

•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•

7.3 Dependent Equations
All other equations currently implemented in the logger involve cross-channel dependencies, and so are intrinsically
more complicated. A cross-channel dependency exists if the output of a channel depends on raw data from more than
one channel in the logger. Typically, there is a primary raw input from the channel in question, with one or more
secondary inputs from other channels, but there are other variations.

The equation type used for such a channel has knowledge of these dependencies built into it but needs to be told which
channel(s) in this particular logger are to be used. For a given channel type, just as the values of the usual coefficients in
the c group vary from one logger to another, so will the values of the coefficients in the cross-compensation group x.

In many cases, it is both useful and feasible for a channel to be recalibrated by end-users, and typically it is the c group
coefficients which will need to be changed. The cross-compensation coefficients in the x group often do not vary
significantly over time, and may be much harder to determine. Although it is possible for OEM users to modify the
values, it is not recommended as routine practice; one reason for using a different name for these coefficients is to act
as a warning cue against accidental modification.

The indices of the secondary input channels in the n group will also differ between loggers. For example, a temperature
channel required for compensation may be Channel-1 in one logger, but Channel-3 in another. The index values are
configured at the factory and can not be changed by users, but their values can be read.

 There is one special case when the value of an n index may be the text field "value". Again, this can be set only at the
factory and applies when an equation requires a correction term using a parameter that the logger does not measure. In
this case, the default parameter set by the command settings will be used.

 The dependent equations are explained by examples on the following pages. For a first reading, it is suggested they are
studied in order, as new concepts are introduced progressively, and some of the later examples are more complicated.

Example 1: corr_pH - Simple temperature correction of pH
Example 2: corr_pH - pH correction without Temperature
Example 3: corr_pres2 - Temperature correction of Pressure
Example 4: corr_cond - Conductivity corrections
Example 5: corr_rinko - Correction of Rinko Dissolved Oxygen using Rinko Temperature sensor
Example 6: corr_rinkoT - Correction of Rinko Dissolved Oxygen using logger Temperature sensor
Example 7: pss78 - derivation of Practical Salinity (1978)
Example 8: seapres - derivation of sea pressure from pressure
Example 9: depth - derivation of depth from pressure
Example 10: corr_metsmeth - Temperature correction of METS methane output
Example 11: corr_rinkoB - Correction of Rinko Dissolved Oxygen using Rinko Temperature
sensor
Example 12: corr_rinkoTB - Correction of Rinko Dissolved Oxygen using logger Temperature
sensor
Example 13: deri_sos, speed of sound
Example 14: deri_speccond, specific conductivity
Example 15: deri_bprpres and deri_bprtemp, BPR channels
Example 16: distancefromechotiming Distance from echo timing
Example 17: corr_o2conc_garcia, O2 concentration compensated for salinity and pressure
Example 18: deri_o2sat_garcia, Derived O2 saturation from concentration
Example 19: corr_cond1 - Conductivity corrections for deep CT cell
Example 20: corr_cond2 - Conductivity corrections for CT cell

RBR#0005199revL - 217

•
•
•
•
•

•
•
•
•
•
•
•

Example 21: corr_cond3 - Conductivity corrections for RBRLegato and 6000dbar C and CT cell
Example 22: corr_pres5 - Temperature correction of Pressure
Example 23: corr_irr - Irradiance
Example 24: corr_irr2 - generic irradiance and PAR
Example 25: deri_dyncorrT and deri_dyncorrS dynamic correction channels

7.3.1 Example 1: corr_pH - Simple temperature correction of pH
Consider an RBRconcerto³ C.T.D.pH logger. Without temperature correction, the pH output from Channel-4 would be a
simple linear function of the raw data:

where R is the normalized voltage ratio from Channel-4 monitoring the pH sensor, c0, c1 are the core coefficients of the
linear equation, and pHraw is the uncorrected output in pH units.

The parameter pH is well known to have a dependence on temperature, so a more accurate value is obtained if the
compensated version of the equation is used. This is typically expressed in a form such as:

Casting this into the form used by the logger, corr_ph, is simple:

where

pHraw is c0 + c1 * R as before, now an intermediate variable in the equation,
x0 corresponds directly in value to the constant "Kph",
x1 is the calibration pH "pHcal", generally 7.0,
x2 is the calibration temperature 'Tcal' in °C,
n0 is the index of the temperature channel (2 in this example),
value(n0) is the final output value of the temperature channel in °C,
pHcorr is the corrected output in pH units.

Note that this equation is for the output from Channel-4, so the source of the primary raw data R is implicitly Channel-4:
there is no n index to specify where the raw data originates.

Examples

>> calibration 4 type
<< calibration 4 type = ph__02

Confirm the channel type.

>> calibration 4 datetime = 20171201000000, c0 = 15.23461, c1 = -0.198743

Set the core coefficients.

>> calibration 4 datetime = 20171201000000, x0 = -0.00302, x1 = 7, x2 = 24.943

RBR#0005199revL - 218

Set the cross-channel correction coefficients.

>> calibration 4
<< calibration 4 type = ph__02, datetime = 20171201000000, c0 = 15.23461, c1 = -0.198743, x0 = -0.00302, x1 = 7, x2
= 24.943, n0 = 2

Request confirmation of all calibration coefficients.

7.3.2 Example 2: corr_pH - pH correction without Temperature
In practice this is perhaps an unlikely scenario, and so a rather artificial example, but it is useful to use the simple
equation for pH to illustrate the concept. Consider an RBRconcerto³ monitoring conductivity and several
electrochemical sensors, including pH. The deployment conditions are already known to have a temperature which is
approximately constant, so the instrument does not monitor temperature: perhaps the instrument is on the sea bed,
and so at about 4°C all the time. But this is very different from the typical calibration temperature for pH of 25°C, so it
would be desirable to correct the readings.

The compensated version of the equation itself is not changed:

but now there is no temperature channel, and so no value we can use for n0. In a case like this, n0 will not have a
numeric value of a logger channel index, but will be set at the factory to the special text string "value". The logger
knows that a temperature value is required in the equation, and so will use the substitute temperature value "sub(T)"
specified by the "settings temperature" command, instead of "value(n0)".

In this instance, the equation effectively takes the form below, and in the above example "sub(T)" might have a value
such as 3.9 (in °C):

Examples

>> calibration 4 type
<< calibration 4 type = ph__02

Confirm the channel type.

>> calibration 4 datetime = 20171201000000, c0 = 15.23461, c1 = –0.198743

Set the core coefficients.

>> calibration 4 datetime = 20171201000000, x0 = –0.00302, x1 = 7, x2 = 24.943

Set the cross-channel correction coefficients.

RBR#0005199revL - 219

•
•
•
•
•
•
•

>> calibration 4
<< calibration 4 type = ph__02, datetime = 20171201000000, c0 = 15.23461,c1 = –0.198743, x0 = –0.00302, x1 = 7, x2
= 24.943, n0 = value

Request confirmation of all calibration coefficients.

>> settings temperature = 3.9
<< settings temperature = 3.9

Set the default fallback temperature value.

7.3.3 Example 3: corr_pres2 - Temperature correction of Pressure
Returning to the example of an RBRconcerto³ C.T.D.pH logger, the pressure reading from Channel-3, without correction
for the effect of temperature on the sensor, is given by a cubic polynomial:

where R is the normalized voltage ratio from Channel-3 monitoring pressure, c0...c3 are the core coefficients of the
cubic polynomial equation, and Praw is the uncorrected pressure output, reported in dbar for RBR instruments.

The equation which accounts for residual temperature sensitivity of the pressure sensor is:

Casting this into the form used by the logger would yield:

where

Praw is the cubic polynomial in R, as before,
x0 is the calibration pressure 'Pcal' in dbar,
x1, x2, x3, x4 correspond directly to the constants "Kp1" through "Kp4",
x5 is the calibration temperature "Tcal" in °C,
n0 is the index of the temperature channel "T",
value(n0) is the final output value of the temperature channel in °C,
Pcorr is the corrected output in dbar.

Examples

>> calibration 3 type
<< calibration 3 type = pres19

Confirm the channel type.

RBR#0005199revL - 220

•
•
•
•
•

>> calibration 3 datetime = 20171201000000, c0 = 0.2346, c1 = 120.9873, c2 = 2. 7356, c3 = 0.7

Set the core coefficients.

>> calibration 3 datetime = 20171201000000, x0 = 9.983, x1 = 0.2003, x2 = 0.2943, x3 = 0.0721, x4 = 0.1049, x5 = 21.29

Set the cross-channel correction coefficients.

>> calibration 3
<< calibration 3 type = pres19, datetime = 20171201000000, c0 = 0.2346, c1 = 120.9873, c2 = 2. 7356, c3 = 0.7, x0 =
9.983, x1 = 0.2003, x2 = 0.2943, x3 = 0.0721, x4 = 0.1049, x5 = 21.29, n0 = 2

Request confirmation of all calibration coefficients.

7.3.4 Example 4: corr_cond - Conductivity corrections

Continuing with the RBRconcerto³ C.T.D.pH logger, the conductivity reading from Channel-1 without corrections is
given by a simple linear function:

where R is the normalized voltage ratio from Channel-1 monitoring conductivity, c0,c1 are the core coefficients of the
linear equation, and Craw is the uncorrected conductivity output, reported in mS/cm for RBR marine instruments.

The equation which corrects the output for the effects of both temperature and pressure on the conductivity cell is:

Casting the equation into the style used by the logger would give:

where

Craw is the uncorrected conductivity, c0 + c1 × R,
x0, x1, x2 correspond directly to the constants "Kc1", "Kc2" and "Kc3",
x3 is the calibration temperature "Tcal" in °C,
x4 is the calibration pressure "Pcal" in dbar,
n0 is the index of the internal temperature of the conductivity cell channel, in this example 8,
value(n0) is the final output value of the internal temperature of the conductivity cell channel in °C,

Combined CT cell formula revision

In September 2018, RBR Ltd. introduced a new equation for the combined CT cell. Instruments with a
combined CT cell manufactured before the 1st September 2018 are using the equation described here. The
difference between the two corrections is a move from a first- to third-order polynomial for pressure
dependence.



RBR#0005199revL - 221

•

•

n1 is the index of the pressure channel, in this example 3,
value(n1) is the final output value of the pressure channel in dbar,
Ccorr is the corrected output in mS/cm.

It is quite common to have a logger monitoring conductivity and temperature without a pressure channel, typically
deployed at a known, constant depth. In this case, n1 would be set to "value", and so value(n1) would be substituted
by a default value (see the "settings pressure" command).

Examples

>> calibration 1 type
<< calibration 1 type = cond06

Confirm the channel type.

>> calibration 1 datetime = 20171201000000, c0 = 0.2346, c1 = 153.4873

Set the core coefficients.

>> calibration 1 datetime = 20171201000000, x0 = 0.2003, x1 = 0.2943, x2 = 0.085, x3 = 15.028, x4 = 10.0025

Set the cross-channel correction coefficients.

>> calibration 1
<< calibration 1 type = cond05, datetime = 20171201000000, c0 = 0.2346, c1 = 153.4873, x0 = 0.2003, x1 = 0.2943, x2
= 0.085, x3 = 15.028, x4 = 10.0025, n0 = 8, n1 = 3

Request confirmation of all calibration coefficients.

7.3.5 Example 5: corr_rinko - Correction of Rinko Dissolved Oxygen using Rinko
Temperature sensor

RINKO formula revision

In November 2013, JFE Advantech introduced a revised version of the equation relating sensor voltage output
to dissolved oxygen saturation. The revised equation is referred to as the (B) version; this example describes
the older, original equation. For a description of the (B) version, refer to Example 11.
Sensors calibrated according to the (B) version of the equation should be labelled as such, so if the sensor has
no label it probably uses this original equation. However, there is always the possibility that this label was not
applied or is now missing; for example, older sensors returned to the manufacturer to be recalibrated will be
processed using the (B) equation, and may not be re-labelled. The most reliable way to determine which
equation applies is to check the most recent calibration certificate from the manufacturer.
It is obviously important that the correct equation is used by the logger, which requires the correct channel
type to be set in the logger's configuration (see the channel command, and the Section Supported Channel
Types). The original equation described in this example requires channel type "doxy02". If you believe that the
logger configuration is not correct for your sensor, please contact RBR Ltd for assistance.



RBR#0005199revL - 222

•
•
•

•
•

•
•
•

•
•
•

Consider now an RBRconcerto³ C.T.D.DO logger, where the DO (dissolved oxygen) channel is a Rinko-III sensor from JFE
Advantech. This sensor also has its own temperature output, used to compensate the temperature dependence of the
raw DO output, and to monitor this requires a fifth channel in the logger, Tr. See the section corr_rinkotemp -
Correction of Rinko Dissolved Oxygen using logger Temperature sensor for details of this temperature channel.

The equation for the temperature corrected output of the DO sensor, as provided by JFE Advantech, is:

where

A, B, C, D, F are coefficients provided by JFE Advantech,
N is the DO sensor output voltage in Volts,
Tr is the compensating temperature, also from the Rinko-III sensor.

The form of this equation used by the logger is:

where

x0 , x1 , x2 , x3 , x5 map directly and trivially to the coefficients A,B,C,D,F,
value(n0) is the compensating temperature.

Note carefully that in this example the value of n0 would be 5, using the temperature measured by the Rinko-III sensor
itself. The temperature measured by the logger on Channel-2 is not suitable for direct use, because it does not have a
time response which matches that of the Rinko-III DO sensor.

DOtcomp is then the input to a simple linear equation, which according to JFE Advantech can be further compensated
for pressure effects as follows:

where

E, G, H are coefficients provided by JFE Advantech,
P is pressure in Mpa,
DOcorr is the fully corrected dissolved oxygen output in percentage saturation.

The G, H coefficients can be modified by the user to update the calibration of the sensor; the remaining coefficients
should not need to be modified.

Casting the equation into the form used by the logger gives:

where

c0, c1 are G, H,
x4 is E,
n1 is the index of the pressure channel, in this example 3
value(n1) is the final output value of the pressure channel in dbar.

RBR#0005199revL - 223

The logger correctly accounts for the fact that value(n1) is in dbar but the value of coefficient x4 (E) is determined
assuming the pressure to be in MPa.

Examples

>> calibration 4 type
<< calibration 4 type = doxy02

Confirm the channel type.

>> calibration 4 datetime = 20171201000000, c0 = 0.346, c1 = 1.08873

Set the "user" coefficients.

>> calibration 4 datetime = 20171201000000, x0 = -41.7148, x1 = 25.425, x2 = -0.08097, x3 = 0.0021, x4 = 4.5e-5, x5 =
0.0

Set the coefficients provided by JFE Advantech.

>> calibration 4
<< calibration 4 type = doxy02, datetime = 20171201000000, c0 = 0.346, c1 = 1.08873, x0 = -41.7148, x1 = 25.425, x2 =
-0.08097, x3 = 0.0021, x4 = 4.5e-5, x5 = 0.0, n0 = 5, n1 = 3

Request confirmation of all calibration coefficients.

7.3.6 Example 6: corr_rinkoT - Correction of Rinko Dissolved Oxygen using logger
Temperature sensor

Consider an RBRconcerto³ C.T.D.DO logger, where the DO channel is a Rinko-III dissolved oxygen sensor from JFE
Advantech. For a number of reasons, it may be desirable to use the logger's measured temperature to compensate the
temperature dependence of the raw DO output, rather than the built-in Rinko-III temperature sensor. This can be done,

RINKO formula revision

In November 2013, JFE Advantech introduced a revised version of the equation relating sensor voltage output
to dissolved oxygen saturation. The revised equation is referred to as the (B) version; this example describes
the older, original equation. For a description of the (B) version, refer to Example 12.
Sensors calibrated according to the (B) version of the equation should be labelled as such, so if the sensor has
no label it probably uses this original equation. However, there is always the possibility that this label was not
applied or is now missing; for example, older sensors returned to the manufacturer to be recalibrated will be
processed using the (B) equation, and may not be re-labelled. The most reliable way to determine which
equation applies is to check the most recent calibration certificate from the manufacturer.
It is obviously important that the correct equation is used by the logger, which requires the correct channel
type to be set in the logger's configuration (see the channel command, and the Section Supported Channel
Types). The original equation described in this example requires channel type "doxy06". If you believe that the
logger configuration is not correct for your sensor, please contact RBR Ltd for assistance.



RBR#0005199revL - 224

•
•
•
•

•
•
•

but requires some additional calculation, because as pointed out earlier (see the section corr_rinko - Correction of
Rinko Dissolved Oxygen using Rinko Temperature sensor), the time response of the logger's temperature sensor
does not match that of the Rinko-III DO sensor.

There is no change to the primary equation for the temperature corrected output of the DO sensor:

as before, but in this case Tr is a "delayed" version of the monitored temperature, computed by the following simple
filter operation:

where

T is the monitored temperature,
Tr(n) is the delayed temperature output,
Tr(n-1) is the previous delayed temperature output,
K is a term relating the measurement interval and the time constants of the sensors as follows:

where

TCdo is the time constant of the Rinko-III Do sensor,
TCt is the time constant of the logger's temperature sensor,
P is the logger's measurement interval set by the "sampling period" command.

The time constants are specified in seconds using the additional auxiliary coefficients x6 (TCdo) and x7 (TCt); the logger
correctly accounts for the fact that the measurement interval P is specified in milliseconds.

Often the logger's temperature sensor has a much faster response than the Rinko-III DO sensor, in which case it is
acceptable to set TCt to zero. Also, in cases where the measurement interval P is long compared to the sensor time
constants, the logger limits the computed value of K to 1, in which case the 'delayed' temperature Tr(n) follows the
input temperature T exactly.

The form of the delayed temperature equation used by the logger becomes:

In the example discussed here, the value of n0 is 2, and value(n0) is the temperature reported by the logger.

Examples

>> calibration 4 type
<< calibration 4 type = doxy06

Confirm the channel type.

>> calibration 4 datetime = 20171201000000, c0 = 0.346, c1 = 1.08873

Set the "user" coefficients.

RBR#0005199revL - 225

•
•
•
•

>> calibration 4 datetime = 20171201000000, x0 = -41.7148, x1 = 25.425, x2 = -0.08097, x3 = 0.0021, x4 = 4.5e-5, x5 =
0.0, x6 = 4.2, x7 = 0.0

Set the coefficients provided by JFE Advantech, and the time constants.

>> calibration 4
<< calibration 4 type = doxy02, datetime = 20171201000000, c0 = 0.346, c1 = 1.08873, x0 = -41.7148, x1 = 25.425, x2 =
-0.08097, x3 = 0.0021, x4 = 4.5e-5, x5 = 0.0, x6 = 4.2, x7 = 0.0, n0 = 5, n1 = 3

Request confirmation of all calibration coefficients.

7.3.7 Example 7: pss78 - derivation of Practical Salinity (1978)
Full, in-situ derivation of salinity requires that conductivity, temperature and pressure are all measured, so a simple
RBRconcerto³ C.T.D will be used as an example.

The equation relating salinity to the three underlying parameters is the Practical Salinity Scale of 1978, often referred to
as PSS78: for further information refer to the section Practical Salinity of Seawater. The equation involves a rather
fearsome looking series of polynomials combined in various ways: mercifully the coefficients are all empirically
determined constants, and all values are embedded in the logger. If the salinity calculation leads to an aberrant value,
which happens generally when the conductivity sensor is in the air and reads a slightly negative value, the logger will
saturate the salinity value to zero instead of generating an error.

Salinity is a 'pure' derived parameter which has its own channel assigned to it, but there is no underlying measurement
hardware for salinity itself; it simply uses the outputs of the conductivity, temperature and pressure channels. This
makes its specification rather sparse: there are no coefficients in either of the 'c' or 'x' groups; all that is needed is to
specify the indices in the 'n' group.

Because hydrostatic pressure is used in the salinity equation, it also accommodates the presence of a channel to
measure atmospheric pressure. In practice most loggers, like the RBRconcerto³ C.T.D in this example, will not have an
"atmospheric pressure" channel, so the 'n' group index will be set to the text "value", and the logger will use the
substitute value specified by the "settings atmosphere" command.

In our example:

n0 is the index of the temperature channel, 3 in this example,
n1 is the index of the pressure channel, 2 in this example,
n2 is the index of the conductivity channel, 1 in this example,
n3 is the index of the atmospheric pressure channel; not present in this example, so set to "value".

If the PSS78 calculation generates an error, the datalogger will report a salinity of 0. This might occur when, in
air, the conductivity report a small negative value. This does not apply if one of the parameters is already
flagged error.



RBR#0005199revL - 226

•
•

Examples

>> calibration 4 type
<< calibration 4 type = sal_00

Confirm the channel type.

>> calibration 4
<< calibration 4 type = sal_00, datetime = 20171201000000, n0 = 3, n1 = 2, n2 = 1, n3 = value

Request confirmation of all calibration coefficients.

It is not uncommon to monitor salinity using a logger with only conductivity and temperature (C.T) channels, deployed
at a constant depth. In this case we might have:

>> calibration 4
<< calibration 4 type = sal_00, datetime = 20171201000000, n0 = 2, n1 = value, n2 = 1, n3 = value

Request confirmation of all calibration coefficients.

7.3.8 Example 8: seapres - derivation of sea pressure from pressure
The sea pressure (also referred to as hydrostatic pressure) is simply the difference between pressure measured
underwater and atmospheric pressure.

Using the example of an RBRconcerto³ C.T.D, for this derived channel:

n0 is the index of the pressure channel, 3 in this case
n1 is the index of the atmospheric pressure channel; not present in this example, so set to "value".

Examples

>> calibration 4 type
<< calibration 4 type = pres08

Confirm the channel type.

>> calibration 4
<< calibration 4 type = pres08, datetime = 20171201000000, n0 = 3, n1 = value

Request confirmation of all calibration coefficients.

RBR#0005199revL - 227

•
•
•

•

7.3.9 Example 9: depth - derivation of depth from pressure
This derived channel implements a simplified equation for water depth in meters, in which no account is taken of either
geographical variations in the Earth's gravitational field, or the variation of water density with depth: both these
quantities are treated as constants, although the water density can be changed using the "settings density" command.

In the form used by the logger, using an RBRconcerto³ C.T.D as an example, this becomes:

where

n0 is the index of the pressure channel, 3 in this case,
n1 is the index of the atmospheric pressure channel; not present in this example, so set to "value".
p is the value set for the density of water using the "settings density" command,g is a fixed constant
0.980665, representing the standard value of acceleration due to gravity, in units which correctly
account for pressures being measured in decibars,
Dm is the calculated depth in meters.

Examples

>> calibration 4 type
<< calibration 4 type = dpth01

Confirm the channel type.

>> calibration 4
<< calibration 4 type = dpth01, datetime = 20171201000000, n0 = 3, n1 = value

Request confirmation of all calibration coefficients.

>> settings density
<< settings density = 1.026021
>> settings density = 1.0197
<< settings density = 1.0197

Request, then change, the programmed water density.

7.3.10 Example 10: corr_metsmeth - Temperature correction of METS methane output
An RBRconcerto³ C.T.D.METS has a METS methane sensor from Franatech in addition to the usual C, T and D channels.
The METS sensor also has its own temperature output, used to compensate the temperature dependence of the raw

RBR#0005199revL - 228

•
•
•

•
•

methane output, and to monitor this requires a fifth channel in the logger, Tm. See the section corr_metstemp -
Temperature measured by a METS (methane sensor) for details of this temperature channel.

The equation for the temperature corrected concentration output of the methane sensor, Cm, as provided by
Franatech, is:

where

c0...c6 are coefficient values provided by Franatech,
Vm is the voltage in Volts from the sensor's methane output,
Vt is the voltage in Volts from the sensor's temperature output.

Franatech's calibration documentation may have no formal naming convention for the coefficients, in which case the
values will be simply shown in an equation on the calibration sheet. The terms c0...c6 are those used by the logger's
calibration command to report or set the values: if updating, be careful to assign the correct values to each coefficient.

The sensor output voltage for methane concentration, Vm, is related to the logger's reported voltage ratio R by a simple
linear equation, the coefficients of which (x0,x1) are determined by RBR Ltd at the factory.

The sensor output voltage for temperature, Vt, is an intermediate variable in the calculation of temperature from the
supporting channel, and can be back-calculated from that result:

where

 ct0, ct1 are the primary coefficient values for the supporting temperature channel,
Tm is the temperature output of that channel in °C, value(n0).

Examples

>> calibration 4 type
<< calibration 4 type = meth00

Confirm the channel type.

>> calibration 4 datetime = 20171201000000, c0 = 1.269, c1 = 0.104, c2 = 3.268, c3 = 0.551, c4 = 0.830, c5 = 4.756, c6
= 1.432

Set the coefficients provided by Franatech.

>> calibration 4 datetime = 20171201000000, x0 = 6.782656, x1 = -9.257345

RBR#0005199revL - 229

•
•
•

Set the secondary coefficients for the voltage conversion.

>> calibration 4
<< calibration 4 type = meth00, datetime = 20171201000000, c0 = 1.269, c1 = 0.104, c2 = 3.268, c3 = 0.551, c4 =
0.830, c5 = 4.756, c6 = 1.432, x0 = 6.782656, x1 = -9.257345, n0 = 5

Request confirmation of everything for the primary methane channel.

>> calibration 5 c0 c1
<< calibration 5 c0 = -5.65608, c1 = 16.80047

Confirm the main coefficients of the temperature compensation channel.

7.3.11 Example 11: corr_rinkoB - Correction of Rinko Dissolved Oxygen using Rinko
Temperature sensor

Consider an RBRconcerto³ C.T.D.DO logger, where the DO (dissolved oxygen) channel is a Rinko-III sensor from JFE
Advantech. This sensor also has its own temperature output, used to compensate the temperature dependence of the
raw DO output, and to monitor this requires a fifth channel in the logger, Tr. See the section corr_rinkotemp -
Correction of Rinko Dissolved Oxygen using logger Temperature sensor for details of this temperature channel.

The equation for the temperature corrected output of the DO sensor, as provided by JFE Advantech, is as follows:

where

A, B, C, D, F are coefficients provided by JFE Advantech,
N is the DO sensor output voltage in Volts,
Tr is the compensating temperature, also from the Rinko-III sensor.

The form of this equation used by the logger is:

RINKO formula revision

In November 2013, JFE Advantech introduced a revised version of the equation relating sensor voltage output
to dissolved oxygen saturation. The revised equation is referred to as the (B) version, and is described in this
example. For a description of the older, original equation, refer to Example 5.
Sensors calibrated according to the (B) version of the equation should be labelled as such, so if the sensor has
no label it probably uses the original equation. However, there is always the possibility that this label was not
applied or is now missing; for example, older sensors returned to the manufacturer to be recalibrated will be
processed using the (B) equation, and may not be re-labelled. The most reliable way to determine which
equation applies is to check the most recent calibration certificate from the manufacturer.
It is obviously important that the correct equation is used by the logger, which requires the correct channel
type to be set in the logger's configuration (see the channel command, and the Section Supported Channel
Types). The (B) version of the equation described in this example requires channel type 'doxy08'. If you believe
that the logger configuration is not correct for your sensor, please contact RBR Ltd for assistance.



RBR#0005199revL - 230

•
•

•
•
•

•
•
•
•

where

x0, x1, x2, x3, x5 map directly and trivially to the coefficients A, B, C, D, F,
value(n0) is the compensating temperature.

Note carefully that in this example the value of n0 would be 5, using the temperature measured by the Rinko-III sensor
itself. The temperature measured by the logger on Channel-2 is not suitable for direct use, because it does not have a
time response which matches that of the Rinko-III DO sensor.

DOtcomp is then the input to a simple linear equation, which according to JFE Advantech can be further compensated
for pressure effects as follows:

where

E, G, H are coefficients provided by JFE Advantech,
P is pressure in Mpa,
DOcorr is the fully corrected dissolved oxygen output in percentage saturation.

The G, H coefficients can be modified by the user to update the calibration of the sensor; the remaining coefficients
should not need to be modified.

Casting the equation into the form used by the logger gives:

where

c0, c1 are G, H,
x4 is E,
n1 is the index of the pressure channel, in this example 3,
value(n1) is the final output value of the pressure channel in dbar.

The logger correctly accounts for the fact that value(n1) is in dbar but the value of coefficient x4 (E) is determined
assuming the pressure to be in MPa.

Examples

>> calibration 4 type
<< calibration 4 type = doxy08

Confirm the channel type.

>> calibration 4 datetime = 20171201000000, c0 = 0.346, c1 = 1.08873

Set the "user" coefficients.

RBR#0005199revL - 231

•
•
•
•

>> calibration 4 datetime = 20171201000000, x0 = -41.7148, x1 = 25.425, x2 = -0.08097, x3 = 0.0021, x4 = 4.5e-5, x5 =
0.0

Set the coefficients provided by JFE Advantech.

>> calibration 4
<< calibration 4 type = doxy08, datetime = 20171201000000, c0 = 0.346, c1 = 1.08873, x0 = -41.7148, x1 = 25.425, x2 =
-0.08097, x3 = 0.0021, x4 = 4.5e-5, x5 = 0.0, n0 = 5, n1 = 3

Request confirmation of all calibration coefficients.

7.3.12 Example 12: corr_rinkoTB - Correction of Rinko Dissolved Oxygen using logger
Temperature sensor

Consider an RBRconcerto³ C.T.D.DO logger, where the DO channel is a Rinko-III dissolved oxygen sensor from JFE
Advantech. For a number of reasons, it may be desirable to use the logger's measured temperature to compensate the
temperature dependence of the raw DO output, rather than the built-in Rinko-III temperature sensor. This can be done,
but requires some additional calculation, because as pointed out earlier (see the section corr_rinko - Correction of
Rinko Dissolved Oxygen using Rinko Temperature sensor), the time response of the logger's temperature sensor
does not match that of the Rinko-III DO sensor.

There is no change to the primary equation for the temperature corrected output of the DO sensor:

as before, but in this case Tr is a 'delayed' version of the monitored temperature, computed by the following simple
filter operation:

where

T is the monitored temperature,
Tr(n) is the delayed temperature output,
Tr(n-1) is the previous delayed temperature output,
K is a term relating the measurement interval and the time constants of the sensors as follows:

RINKO formula revision

In November 2013, JFE Advantech introduced a revised version of the equation relating sensor voltage output
to dissolved oxygen saturation. The revised equation is referred to as the (B) version, and is described in this
example. For a description of the older, original equation, refer to Example 6.
Sensors calibrated according to the (B) version of the equation should be labelled as such, so if the sensor has
no label it probably uses the original equation. However, there is always the possibility that this label was not
applied or is now missing; for example, older sensors returned to the manufacturer to be recalibrated will be
processed using the (B) equation, and may not be re-labelled. The most reliable way to determine which
equation applies is to check the most recent calibration certificate from the manufacturer.
It is obviously important that the correct equation is used by the logger, which requires the correct channel
type to be set in the logger's configuration (see the channel command, and the Section Supported Channel
Types). The (B) version of the equation described in this example requires channel type "doxy09". If you
believe that the logger configuration is not correct for your sensor, please contact RBR Ltd for assistance.



RBR#0005199revL - 232

•
•
•

•
•
•

•
•
•
•

where

TCdo is the time constant of the Rinko-III Do sensor,
TCt is the time constant of the logger's temperature sensor,
P is the logger's measurement interval set by the "sampling period" command.

The time constants are specified in seconds using the additional auxiliary coefficients x6 (TCdo) and x7 (TCt); the logger
correctly accounts for the fact that the measurement interval P is specified in milliseconds.

Often the logger's temperature sensor has a much faster response than the Rinko-III DO sensor, in which case it is
acceptable to set TCt to zero. Also, in cases where the measurement interval P is long compared to the sensor time
constants, the logger limits the computed value of K to 1, in which case the 'delayed' temperature Tr(n) follows the
input temperature T exactly.

The form of the delayed temperature equation used by the logger becomes:

In the example discussed here, the value of n0 is 2, and value(n0) is the temperature reported by the logger.

After calculating DOtcomp using this 'delayed' temperature value, it then becomes the input to a simple linear
equation, which according to JFE Advantech can be further compensated for pressure effects as follows:

where

E, G, H are coefficients provided by JFE Advantech,
P is pressure in Mpa,
DOcorr is the fully corrected dissolved oxygen output in percentage saturation.

The G, H coefficients can be modified by the user to update the calibration of the sensor; the remaining coefficients
should not need to be modified.

Casting the equation into the form used by the logger gives:

where

c0, c1 are G, H,
x4 is E,
n1 is the index of the pressure channel, in this example 3,
value(n1) is the final output value of the pressure channel in dbar.

The logger correctly accounts for the fact that value(n1) is in dbar but the value of coefficient x4 (E) is determined
assuming the pressure to be in MPa.

Examples

>> calibration 4 type
<< calibration 4 type = doxy09

Confirm the channel type.

RBR#0005199revL - 233

•
•
•

>> calibration 4 datetime = 20171201000000, c0 = 0.346, c1 = 1.08873

Set the "user" coefficients.

>> calibration 4 datetime = 20171201000000, x0 = -41.7148, x1 = 25.425, x2 = -0.08097, x3 = 0.0021, x4 = 4.5e-5, x5 =
0.0, x6 = 4.2, x7 = 0.0

Set the coefficients provided by JFE Advantech, and the time constants.

>> calibration 4
<< calibration 4 type = doxy09, datetime = 20171201000000, c0 = 0.346, c1 = 1.08873, x0 = -41.7148, x1 = 25.425, x2 =
-0.08097, x3 = 0.0021, x4 = 4.5e-5, x5 = 0.0, x6 = 4.2, x7 = 0.0, n0 = 5, n1 = 3

Request confirmation of all calibration coefficients.

7.3.13 Example 13: deri_sos, speed of sound
Full, in-situ derivation of speed of sound requires salinity, hydrostatic pressure and temperature, so a simple
RBRconcerto³ C.T.D will be used as an example.

The equation used in the logger relating speed of sound to the three underlying parameters is the Chen and Millero
equation reviewed by Wong and Zhu, often referred to as UNESCO equation. For further information about this
equation, please refer to the paper: G.S.K. Wong and S. Zhu, Speed of sound in seawater as a function of salinity,
temperature and pressure (1995) J. Acoust. Soc. Am. 97(3) pp 1732-1736.

The equation involves a rather fearsome looking series of polynomials combined in various ways: mercifully the
coefficients are all empirically determined constants, and all values are embedded in the logger.

Speed of sound is a 'pure' derived parameter which has its own channel assigned to it, but there is no underlying
measurement hardware for speed of sound itself; it simply uses the outputs of the salinity, temperature and hydrostatic
pressure channels. This makes its specification rather sparse: there are no coefficients in either of the c or x groups; all
that is needed is to specify the indices in the n group.

In our example:

n0 is the index of the temperature channel, 3 in this example,
n1 is the index of the hydrostatic pressure channel, 4 in this example,
n2 is the index of the salinity channel, 6 in this example.

Examples

>> calibration 7 type
<< calibration 7 type = sos_00

Confirm the channel type.

RBR#0005199revL - 234

•

•
•
•

>> calibration 7
<< calibration 7 type = sos_00, datetime = 20171201000000, n0 = 3, n1 = 4, n2 = 6

Request confirmation of all channel indices.

7.3.14 Example 14: deri_speccond, specific conductivity
This equation permits conductivity readings taken in different environments to be compared by correcting them to a
standard environment at 25°C. Specific conductivity is usually of greater interest in fresh water applications, and is by
convention always reported in μS/cm, although the parameter does apply to salt water as well. The equation
which corrects for temperature to derive specific conductivity from standard conductivity is given below. It is
associated with the scon00 derived channel type.

where

Ccorr is the standard conductivity reading (already compensated for temperature dependence of the
measurement circuit as described in Example 4),
T is the temperature used for correction, in °C,
K0 is a units correction factor, and
K1 is a temperature coefficient.

In the calibration settings for the scon00 derived channel type, the channel cross-reference index for Ccorr is given by
n0, and for T by n1.

K0 has a value of 1 if the Ccorr channel is in μS/cm, or a value of 1000 if Ccorr is in mS/cm. The logger can deduce this
from the units of the Ccorr channel; an explicit coefficient is not needed.

K1 depends on the ionic composition of the water being monitored, and typically has a value in the range 0.0191 to
0.0214. The lower end of this range is suitable for KCl solutions, the higher end for NaCl solutions. The value used by
the logger can be queried and modified via the settings command, using the speccondtempco parameter. If this
parameter is never explicitly set, the default value used is 0.0191.

7.3.15 Example 15: deri_bprpres and deri_bprtemp, BPR channels
Loggers with BPR channels interface a Paroscientific, Inc. transducer. The logger measure precisely the output
frequencies from the transducer. Those transducers generally outputs two signals, one for pressure and one for
temperature.

There are two channels for the periods measured (peri00 and peri01). But in order to convert them in a meaningful
pressure and temperature, the logger provides two channels which implement the calibration equation from
Paroscientific, Inc. They rely on two type of equations: deri_bprpres (pressure in dbar) and deri_bprtemp
(temperature in °C).

RBR#0005199revL - 235

•

•
•
•
•

•

•
•

deri_bprpres equation

The coefficients x0 ... x10 are provided by Paroscientic, Inc. and are mapped according to the
following bijection:

Paroscientific Inc. coefficient U
0

C
1

C
2

C
3

D
1

D
2

T
1

T
2

T
3

T
4

T5

deri_bprpres coefficient x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
n0 is the index of the pressure period channel, in this example 1
value(n0) is the final output value of the pressure period channel in picoseconds.
n1 is the index of the temperature period channel, in this example 2
value(n1) is the final output value of the temperature period channel in picoseconds.

deri_bprtemp equation

The coefficients x0 ... x3 are provided by Paroscientic, Inc. and are mapped according to the following
bijection:

Paroscientific Inc. coefficient U0 Y1 Y2 Y3

deri_bprtemp coefficient x0 x1 x2 x3
n0 is the index of the temperature period channel, in this example 2
value(n0) is the final output value of the temperature period channel in picoseconds.

RBR#0005199revL - 236

Examples

>> calibration 3 type
<< calibration 3 type = bpr_08

>> calibration 4 type
<< calibration 4 type = bpr_09

Confirm the channel type.

>> calibration 3 datetime= 20171123120721, x0 = 5.8310298E+00, x1 = -24.514029E+03, x2 = -573.64117E+00, x3 =
76.129281E+03, x4 = 35.688001E-03, x5 = 0.0000000E+00, x6 = 30.413169E+00, x7 = 664.14898E-03

<< calibration 3 datetime = 20171123120721, x0 = 5.8310300e+000, x1 = -24.514030e+003, x2 = -573.64115e+000, x3
= 76.129280e+003, x4 = 35.688000e-003, x5 = 0.0000000e+000, x6 = 30.413170e+000, x7 = 664.14899e-003
>> calibration 3 datetime = 20171123120721, x8 = 58.803409E+00, x9 = 180.91160E+00, x10 = 0.0000000E+00
<< calibration 3 datetime = 20171123120721, x8 = 58.803408e+000, x9 = 180.91160e+000, x10 = 0.0000000e+000

Set the pressure coefficients provided by Paroscientific, Inc.

>> calibration 4 datetime = 20171123120722, x0 = 5.8310298E+00, x1 = -3.8981210E+03, x2 = -10.493120E+03, x3 =
0.0000000E+00
<< calibration 4 datetime = 20171123120722, x0 = 5.8310300e+000, x1 = -3.8981210e+003, x2 = -10.493120e+003, x3
= 0.0000000e+000

Set the temperature coefficients provided by Paroscientific, Inc.

>> calibration 3
<< calibration 3 type = bpr_08, datetime = 20171123120721, x0 = 5.8310300e+000, x1 = -24.514030e+003, x2 =
-573.64115e+000, x3 = 76.129280e+003, x4 = 35.688000e-003, x5 = 0.0000000e+000, x6 = 30.413170e+000, x7 =
664.14899e-003, x8 = 58.803408e+000, x9 = 180.91160e+000, x10 = 0.0000000e+000, n0 = 1, n1 = 2

>> calibration 4
<< calibration 4 type = bpr_09, datetime = 20171123120722, x0 = 5.8310300e+000, x1 = -3.8981210e+003, x2 =
-10.493120e+003, x3 = 0.0000000e+000, n0 = 2

Request confirmation of all pressure and temperature calibration coefficients.

7.3.16 Example 16: distancefromechotiming Distance from echo timing
An RBRconcerto³ Alti has a RBRalti sensor which outputs distance and echo timing. Only distance is reported by the
RBRconcerto³.

Full, in-situ derivation of distance from echo timing requires an average speed of sound over the path used by the
sound.

RBR#0005199revL - 237

•
•

•
•

•
•
•
•
•
•

Distance is a 'pure' derived parameter which has its own channel assigned to it, but there is no underlying
measurement hardware for distance itself; it simply uses the outputs of the echo timing channel and the average speed
of sound setting. This makes its specification rather sparse: there are no coefficients in either of the c or x groups; all
that is needed is to specify the indices in the n group.

In our example:

n0 is the index of the echo timing channel, 2 in this example,
n1 is the index of the average speed of sound channel, value in this example, ie the default setting.

The distance is calculated as follows:

where

Te is the echo timing (round trip) in milliseconds, value(n0).
ASS is the average sound of speed, value(n1) (refer to "settings avgsoundspeed").

Examples

>> calibration 1 type
<< calibration 1 type = alti00

Confirm the channel type.

>> calibration 1
<< calibration 1 type = alti00, datetime = 20171201000000, n0 = 2, n1 = value

Request confirmation of all calibration coefficients.

7.3.17 Example 17: corr_o2conc_garcia, O2 concentration compensated for salinity
and pressure

Consider an RBRconcerto³ C.T.D.DO logger, where the DO channel is a RBRcoda ODO. The RBRcoda ODO transfers both
the foil temperature and the dissolved oxygen concentration (not compensated for salinity). The RBRconcerto³
calculates the concentration compensated for salinity and pressure first:

where

O2corr is the corrected O2 concentration, compensated for salinity and pressure,
O2unc is the uncompensated O2 concentration returned by the RBRoptode,
C0 and C1 are corrections and scaling factors for the uncompensated O2 concentration,
C2 is a correction factor for pressure,
S is the salinity in PSU,
P is sea pressure in dbar,

and

RBR#0005199revL - 238

•
•
•
•
•
•
•

where T is the water temperature (in °C), and

which correspond to Garcia and Gordon coefficients.

The corresponding logger coefficients are:

c0 is C0
c1 is C1
c2 is C2
n0 is the index of the water temperature channel
n1 is the index of the salinity channel
n2 is the index of the pressure channel
n3 is the index of the atmospheric pressure channel (set to value in order to use settings
atmosphere)

Examples

>> calibration 4 type
<< calibration 4 type = doxy23

Confirm the channel type.

>> calibration 4
<< calibration 4 type = doxy23, datetime = 20171201000000, c0 = 0,c1 = 1, c2 = 3.25e-5, n0 = 5, n1 = 8, n2 = 3, n3 =
value

Request confirmation of all calibration coefficients.

7.3.18 Example 18: deri_o2sat_garcia, Derived O2 saturation from concentration
Consider an RBRconcerto³ C.T.D.DO logger, where the DO channel is a RBRcoda ODO. The RBRcoda ODO transfers both
the foil temperature and the dissolved oxygen concentration (not compensated for salinity). The RBRconcerto³
calculates the concentration compensated for salinity first, then the air saturation (in %) via the following equation:

One might change c0 and c1 in order to perform a two point calibration to the RBRcoda ODO. Please note that
those coefficients are used and stored only by the logger, not the RBRcoda ODO.



RBR#0005199revL - 239

•
•
•

•
•
•
•

where

Cc is the concentration in uMol/L, compensated for salinity,
Patm is atmospheric pressure, and
Pav is air vapour pressure.

Solubility is calculated via Gordon and Garcia as:

where S is the salinity in PSU and Ts is defined as:

with T being the water temperature in °C and:

Air vapour pressure (in dbar) is calculated as:

The corresponding logger coefficients are:

n0, the index of the concentration channel, already compensated for salinity
n1, the index of the water temperature channel
n2, the index of the salinity channel
n3, the index of the atmospheric pressure channel (set to value in order to use settings atmosphere)

The O2 saturation equation was revised in firmware 1.094 of the RBRconcerto3, RBRmaestro3, RBRduo3,

RBRlegato3 and RBRargo3. For the previous implementation of this equation, refer to the version B of this
document.



RBR#0005199revL - 240

•
•
•

•
•
•

•

•

Examples

>> calibration 9 type
<< calibration 9 type = doxy22

Confirm the channel type.

>> calibration 9
<< calibration 9 type = doxy22, datetime = 20171201000000, n0 = 4, n1 = 5, n2 = 8, n3 = value

Request confirmation of all channel indices.

7.3.19 Example 19: corr_cond1 - Conductivity corrections for deep CT cell
Continuing with the RBRconcerto³ C.T.D.pH logger, the conductivity reading from Channel-1 without corrections is
given by a simple linear function:

where R is the normalized voltage ratio from Channel-1 monitoring conductivity, c0,c1 are the core coefficients of the
linear equation, and Craw is the uncorrected conductivity output, reported in mS/cm for RBR marine instruments.

The equation which corrects the output for the effects of both temperature and pressure on the conductivity cell is:

Casting the equation into the style used by the logger would give:

where

Craw is the uncorrected conductivity, c0 + c1 × R,
x0, x1 correspond respectively to the temperature compensation constants "Kc1", "Kc2"
x2, x3, x4, x5, x6 correspond respectively to the pressure compensation constants "Kp1", "Kp2",
"Kp3", "Kp4", "Kp5"
x7 is the calibration temperature "Tcal" in °C,
x8 is the calibration pressure "Pcal" in dbar,
n0 is the index of the internal temperature of the conductivity cell channel, in this example 8,
value(n0) is the final output value of the internal temperature of the conductivity cell channel in °C,
n1 is the index of the pressure channel, in this example 3,
value(n1) is the final output value of the pressure channel in dbar,
Ccorr is the corrected output in mS/cm.

It is quite common to have a logger monitoring conductivity and temperature without a pressure channel, typically
deployed at a known, constant depth. In this case, n1 would be set to "value", and so value(n1) would be substituted
by a default value (see the "settings pressure" command).

RBR#0005199revL - 241

Examples

>> calibration 1 type
<< calibration 1 type = cond11

Confirm the channel type.

>> calibration 1 datetime = 20171201000000, c0 = 0.2346, c1 = 153.4873

Set the core coefficients.

>> calibration 1 datetime = 20171201000000, x0 = 0.2003, x1 = 0.2943, x2 = 0.005, x3 = 0.085, x4 = 0.0001, x5 =
0.0000, x6= 0.0000, x7 = 15.028, x8 = 10.0025

Set the cross-channel correction coefficients.

>> calibration 1
<< calibration 1 type = cond11, datetime = 20171201000000, c0 = 0.2346, c1 = 153.4873, x0 = 0.2003, x1 = 0.2943, x2
= 0.005, x3 = 0.085, x4 = 0.0001, x5 = 0.0000, x6= 0.0000, x7 = 15.028, x8 = 10.0025, n0 = 8, n1 = 3

Request confirmation of all calibration coefficients.

7.3.20 Example 20: corr_cond2 - Conductivity corrections for CT cell

Continuing with the RBRconcerto³ C.T.D.pH logger, the conductivity reading from Channel-1 without corrections is
given by a simple linear function:

where R is the normalized voltage ratio from Channel-1 monitoring conductivity, c0,c1 are the core coefficients of the
linear equation, and Craw is the uncorrected conductivity output, reported in mS/cm for RBR marine instruments.

The equation which corrects the output for the effects of both temperature and pressure on the conductivity cell is:

Casting the equation into the style used by the logger would give:

where

CT cell formula revision

In September 2018, RBR Ltd. introduced a new equation for the combined CT cell. Instruments manufactured
after the 1st September 2018 are using this equation. The difference between the two corrections is a move
from a first- to third-order polynomial for pressure dependence.



RBR#0005199revL - 242

•
•
•
•
•
•

•

•

Craw is the uncorrected conductivity, c0 + c1 × R,
x0, x1 correspond respectively to the temperature compensation constants "Kc1", "Kc2"
x2, x3, x4 correspond respectively to the pressure compensation constants "Kp1", "Kp2", "Kp3"
x5 is the calibration temperature "Tcal" in °C,
x6 is the calibration pressure "Pcal" in dbar,
n0 is the index of the internal temperature of the conductivity cell channel, in this example 8,
value(n0) is the final output value of the internal temperature of the conductivity cell channel in °C,
n1 is the index of the pressure channel, in this example 3,
value(n1) is the final output value of the pressure channel in dbar,
Ccorr is the corrected output in mS/cm.

It is quite common to have a logger monitoring conductivity and temperature without a pressure channel, typically
deployed at a known, constant depth. In this case, n1 would be set to "value", and so value(n1) would be substituted
by a default value (see the "settings pressure" command).

Examples

>> calibration 1 type
<< calibration 1 type = cond11

Confirm the channel type.

>> calibration 1 datetime = 20171201000000, c0 = 0.2346, c1 = 153.4873

Set the core coefficients.

>> calibration 1 datetime = 20171201000000, x0 = 0.2003, x1 = 0.2943, x2 = 0.005, x3 = 0.085, x4 = 0.0001, x5 =
15.028, x6 = 10.0025

Set the cross-channel correction coefficients.

>> calibration 1
<< calibration 1 type = cond11, datetime = 20171201000000, c0 = 0.2346, c1 = 153.4873, x0 = 0.2003, x1 = 0.2943, x2
= 0.005, x3 = 0.085, x4 = 0.0001, x5 = 15.028, x6 = 10.0025, n0 = 8, n1 = 3

Request confirmation of all calibration coefficients.

7.3.21 Example 21: corr_cond3 - Conductivity corrections for RBRLegato and 6000dbar
C and CT cell

With the RBRlegato³ C.T.D logger, the conductivity reading from the conductivity channel without corrections is given
by a simple linear function:

RBR#0005199revL - 243

•
•
•
•
•
•

•

•

where R is the normalized voltage ratio from the channel monitoring conductivity, c0,c1 are the core coefficients of the
linear equation, along with c2 which is a geometrical factor (K-factor) reflecting the final installation of conductivity cell,
and Craw is the uncorrected conductivity output, reported in mS/cm for RBR marine instruments.

The equation which corrects the output for the effects of both temperature and pressure on the conductivity cell is:

Casting the equation into the style used by the logger would give:

where

Craw is the uncorrected conductivity, c0 + c1 × c2 × R,
x0, x1 correspond respectively to the temperature compensation constants "Kc1", "Kc2"
x2, x3, x4 correspond respectively to the pressure compensation constants "Kp1", "Kp2", "Kp3"
x5 is the calibration temperature "Tcal" in °C,
x6 is the calibration pressure "Pcal" in dbar,
n0 is the index of the internal temperature of the conductivity cell channel, in this example 7,
value(n0) is the final output value of the internal temperature of the conductivity cell channel in °C,
n1 is the index of the pressure channel, in this example 3,
value(n1) is the final output value of the pressure channel in dbar,
Ccorr is the corrected output in mS/cm.

It is quite common to have a logger monitoring conductivity and temperature without a pressure channel, typically
deployed at a known, constant depth. In this case, n1 would be set to "value", and so value(n1) would be substituted
by a default value (see the "settings pressure" command).

Examples

>> calibration 1 type
<< calibration 1 type = cond13

Confirm the channel type.

>> calibration 1 datetime = 20171201000000, c0 = 0.2346, c1 = 153.4873, c2 = 1.0001

Set the core coefficients.

>> calibration 1 datetime = 20171201000000, x0 = 0.2003, x1 = 0.2943, x2 = 0.005, x3 = 0.085, x4 = 0.0001, x5 =
15.0280, x6 = 10.0025

Set the cross-channel correction coefficients.

RBR#0005199revL - 244

•
•
•
•
•
•
•

•
•
•

>> calibration 1
<< calibration 1 type = cond13, datetime = 20171201000000, c0 = 0.2346, c1 = 153.4873, c2 = 1.0001 x0 = 0.2003, x1
= 0.2943, x2 = 0.0051, x3 = 0.0850, x4 = 0.0001, x5 = 15.0280, x6 = 10.0025, n0 = 7, n1 = 3

Request confirmation of all calibration coefficients.

7.3.22 Example 22: corr_pres5 - Temperature correction of Pressure
This equation computes a temperature corrected pressure value, with the temperature, Tsensor, derived from a voltage
ratio corresponding to temperature of the sensor itself Rt, as follows, corrected by the pressure ratio signal R:

Where the Kt terms are the polynomial coefficients for the temperature calculation, the Kc terms are the polynomial
coefficients of the pressure correction, while A and B are coefficients of the measurement circuit linear model.

Once the temperature is known, we proceed almost exactly as in example 3 above, So the pressure reading, without
correction for the effect of temperature on the sensor, is given by a cubic polynomial:

where c0...c3 are the core coefficients of the cubic polynomial equation, and Praw is the uncorrected pressure output,
reported in dbar for RBR instruments.

The equation which accounts for residual temperature sensitivity of the pressure sensor is:

Casting this into the form used by the logger would yield:

where

Praw is the cubic polynomial in R as in example 3,
x0 is the calibration pressure 'Pcal' in dbar,
x1, x2, x3, x4 correspond directly to the constants "Kp1" through "Kp4",
x5 is the calibration temperature "Tcal" in °C,
x6,x7 correspond to the circuit gain parameters A and B
x8,x9,x10,x11 correspond to the constants "Kc0" through "Kc3"
x12,x13,x14,x15 correspond to the constants "Kt1", through "Kt3" used to compute the sensor
temperature
n0 is the index of the sensor temperature ratio channel,
Tsensor is the computed sensor temperature in °C,
Pcorr is the corrected output in dbar.

RBR#0005199revL - 245

Examples

>> calibration 3 type
<< calibration 3 type = pres28

Confirm the channel type.

>> calibration 3 datetime = 20171201000000, c0 = 0.2346, c1 = 120.9873, c2 = 2. 7356, c3 = 0.7

Set the core coefficients.

>> calibration 3 datetime = 20171201000000, x0 = 9.983, x1 = 0.2003, x2 = 0.2943, x3 = 0.0721, x4 = 0.1049, x5 = 21.29

>> calibration 3 datetime = 20171201000000, x6 = 0, x7 = 187.06043

>> calibration 3 datetime = 20171201000000, x8 = 14.219203, x9 = -0.30655386, x10 = 0.0012941403, x11
=0.0000039787190

>> calibration 3 datetime = 20171201000000, x12 = -3727.6430, x13 = 2.8672020, x14 = -0.00075268429, x15 =
0.000000068588312

>> calibration 3 datetime = 20171201000000, n0 = 5

Set the cross-channel correction coefficients.

>> calibration 3
<< calibration 3 type = pres28, datetime = 20171201000000, c0 = 0.2346, c1 = 120.9873, c2 = 2. 7356, c3 = 0.7, x0 =
9.983, x1 = 0.2003, x2 = 0.2943, x3 = 0.0721, x4 = 0.1049, x5 = 21.29, x6 = 0.0, x7 = 187.06043e+000, x8= 14.219203, x9
= -306.55386e-003, x10 = 1.2941403e-003, x11 = 3.9787190e-006, x12 = -3.7276430e+003, x13 = 2.8672020e+000,
x14 = -752.68429e-006, x15 = 68.588312e-009, n0 = 5

Request confirmation of all calibration coefficients.

7.3.23 Example 23: corr_irr - Irradiance
This equation computes first a temperature corrected irradiance value in Volts:

RBR#0005199revL - 246

•
•
•
•
•
•
•

•

Then applies a linear equation to convert to final units:

where

c0, c1 are calibration coefficients
x0, x1, x2 are coefficients required to convert the raw data in Volts
x3, x4, x5 are the temperature correction coefficients
n0 is the index of the temperature of the sensor channel,
Tsensor is the temperature of the sensor in °C,
Irrtempcompensated is the measured irradiance in Volts and compensated in temperature
Irrcalibrated is the measured irradiance in final calibration units

Examples

>> channel 3 type
<< channel 3 type = irr_01

Confirm the channel type.

>> calibration 3 datetime = 20171201000000, c0 = 0.000, c1 = 1.0000

Set the core coefficients.

>> calibration 3 datetime = 20171201000000, x0 = 9.983, x1 = 0.2003, x2 = 1.000, x3 = 0.0721, x4 = 0.1049, x5 = 21.29

Set the cross-channel correction coefficients.

>> calibration 3
<< calibration 3 type = irr_01, datetime = 20171201000000, c0 = 0.0000, c1 = 1.0000, x0 = 9.983, x1 = 0.2003, x2 =
1.000, x3 = 0.0721, x4 = 0.1049, x5 = 21.29, n0 = 7

Request confirmation of all calibration coefficients.

7.3.24 Example 24: corr_irr2 - generic irradiance and PAR
This equation is a refined and simplified version of the one given in Example 23, and will typically be used to present
irradiance in μW/cm2/nm, or PAR in μmol/m²/s.

where

c0 is a user-adjustable dark offset value,

https://docs.rbr-global.com/display/L3DOC/.Example+xx%3A+corr_irr+-+Irradiance%2C+490nm+vH

RBR#0005199revL - 247

•
•

•
•

•
•
•

c1 is the primary slope coefficient which transforms the value to final units,
c2 is an immersion factor, which corrects for use in a medium other than was used for calibration;
water compared with air, for example,
R is the raw voltage ratio measured by the logger,
x0, x1, x2 are factory-determined coefficients of a quadratic term, used to correct the sensor's dark
current for temperature effects,
x3 is the temperature at which the optical calibration was performed,
Tsensor is the internally measured temperature of the sensor in °C, and
Irrtempcompensated is the final value of irradiance or PAR, temperature compensated and presented in
final calibration units.

Examples

>> channel 3 type
<< channel 3 type = irr_05

Confirms the channel type.

>> calibration 3 datetime = 20210901085500, c0 = 0.000, c1 = 5079.0, c2 = 1.2

Sets the core coefficients.

>> calibration 3
<< calibration 3 label = irradiance_00, datetime = 20210901085500, c0 = 0.000, c1 = 5079.0, c2 = 1.2, x0 = 0.098, x1 =
0.023, x2 = 0.00037, x3 = 23.4, n0 = 4

Requests confirmation of all calibration coefficients.

7.3.25 Example 25: deri_dyncorrT and deri_dyncorrS dynamic correction channels
There are two types of dynamic errors affecting salinity measurements: response time and sensor misalignments, and
thermal mass errors.

"Response time and sensor misalignments", or "C-T lag", refers to the time lag between temperature and conductivity
measurements, which would result in "salinity spiking". It is generated by two separate mechanisms: the physical
separation between the thermistor and the conductivity cell, and the inherent response time of the thermistor.

"Thermal mass errors" refers to the thermal mass of the conductivity cell impacting the temperature of the water
column where the seawater conductivity is measured. It occurs when the CTD travels through a temperature gradient.
Thermal mass errors present two main separate timescales: a long-term thermal mass error (timescales of minutes) and
a short-term thermal mass error (timescales of seconds).

In order to correct all those dynamic errors, the logger provides two channels (temp38 and sal_01) that implement the
dynamic correction equations (supported since firmware 1.144) . They rely on two types of equations: deri_dyncorrT
(temperature in °C) and deri_dyncorrS (salinity in PSU).

RBR#0005199revL - 248

•
•
•
•

•

deri_dyncorrT equation
If the sample is acquired or fetched while actively logging at a sampling rate greater or equal to 1Hz:

Otherwise:

where:

Tcor is the C-T lag corrected temperature (°C)
Tmeas is the marine temperature (°C)
Fs is the sampling frequency (Hz).
Δt is the C-T lag correction (s).

deri_dyncorrT coefficients name coefficient name implemented

Δt
x0

n0 is the index of the supporting marine temperature channel (n0=3 in examples below)..
value(n0) is the final output value of this channel in degree Celsius, i.e Tmeas.

deri_dyncorrS equation

With

And:

The C-T lag correction and the short-term thermal mass correction are only applied when the sample is
acquired while the instrument is actively logging at a sampling rate of at least 1Hz.
The long-term thermal mass correction is only applied when the sample is acquired while the instrument is
actively logging at a sampling rate of at least 0.1Hz.



RBR#0005199revL - 249

•
•

•

•

Where:

And:

If the sample is fetched or not acquired while actively sampling at a rate faster or equal to 1Hz:

If the sample is fetched or not acquired while actively sampling at a rate faster or equal to 0.1Hz:

where:

fN is the Nyquist frequency, defined as half the sampling rate Fs.
α(n) is the magnitude of short-term thermal mass correction and depends on the instantaneous
ascent rate.
τ(n) is the time constant of short-term thermal mass correction (s) and depends on the instantaneous
ascent rate.
ctcoeff(n) is the magnitude of the long-term thermal mass correction and depends on the
instantaneous ascent rate.

deri_dyncorrS coefficients name coefficient name implemented

αa
x0

αe
x1

τa
x2

τe
x3

ctcoeffa
x4

RBR#0005199revL - 250

•

•

•

•

ctcoeffe
x5

Vpmin
x6

Vpmax
x7

Vpfc
x8

n0 is the index of the conductivity channel. (n0=1 in examples below).
value(n0) is the final output value of this channel in mS/cm, i.e. C.
n1 is the index of the sea pressure channel. (n1=2 in examples below).
value(n1) is the final output value of this channel in dbar i.e. P.
n2 is the index of the C-T lag corrected temperature channel. (n2=3 in examples below).
value(n2) is the final output value of this channel in °C, i.e. Tcor .
n3 is the index of the internal temperature of the conductivity cell channel. (n3=7 in examples below).
value(n3) is the final output value of this channel in °C, i.e. Tcond.

Examples

>> calibration 5 type
<< calibration 5 type = temp38

>> calibration 6 type
<< calibration 6 type = sal_01

Confirm the channel type.

>> calibration 5 datetime= 20220119163000, x0 = 0.3500

<< calibration 5 datetime= 20220119163000, x0 = 0.3500

Set the temperature coefficients.

>> calibration 6 datetime = 20220119163000, x0=0.1300, x1=5.9000, x2 = 1.0200e-00
<< calibration 6 datetime = 20220119163000, x0=0.1300, x1=5.9000, x2 = 1.0200e-00

Set the salinity coefficients provided.

>> calibration 5
<< calibration 5 type = temp38, datetime = 20220119163000, x0 = 0.3500, n0=3

RBR#0005199revL - 251

>> calibration 6
<< calibration 6 type = sal_01, datetime = 20220119163000, x0 = 0.3700, x1 = -1.0300, x2 = 16.0200, x3 = -0.2600, x4 =
0.1400, x5 = -1.0000, x6 = 0.0400, x7 = 0.0500, x8 = 0.1500, n0=1, n1=2, n2=3, n3=7

Request confirmation of all temperature and salinity calibration coefficients.

RBR#0005199revL - 252

7.4 Supporting Material

7.4.1 Practical Salinity of Seawater
Since it is not possible to directly measure the absolute salinity of seawater (the ratio of the mass of dissolved material
to the mass of seawater), it is necessary to work in terms of practical salinity, which can be determined from
measurable properties of seawater.

This is defined in "Algorithms for computation of fundamental properties of seawater", by N. P. Fotonoff and R. C.
Millard Jr.:

The practical salinity, symbol S, of a sample of sea water, is defined in terms of the
ratio K of the electrical conductivity of a sea water sample of 15°C and the pressure of
one standard atmosphere, to that of a potassium chloride (KCl) solution, in which the
mass fraction of KCl is 0.0324356, at the same temperature and pressure. The K value
exactly equal to one corresponds, by definition, to a practical salinity equal to 35.

The practical salinity of seawater can be calculated from three measurable parameters: electrical conductivity,
temperature, and pressure. Each of the three parameters is necessary for the salinity calculation since the electrical
conductivity of seawater changes with temperature and pressure. Electrical conductivity of seawater is dependent
upon the number of dissolved ions per volume (salinity), as well as the mobility of those ions (affected by temperature
and pressure). The accuracy of the salinity 'measurement' depends on the accuracy to which the three principal
parameters can be measured.

The Practical Salinity Scale of 1978, endorsed by UNESCO/IAPSO, is currently the world standard for salinity calculation.
It is used by all RBR CTD instruments and software for the calculation of seawater salinity, using the equations given
below; these are taken from "IEEE Journal of Oceanic Engineering", Vol. OE-5, No. 1, January 1980, page 14. Practical
salinity, S, is given by:

where ΔS is a temperature correction term given by

where Fn(RT) is the polynomial function

and T is the in-situ temperature according to the International Temperature Scale of 1968 (ITS-68). All RBR loggers and
software use the more recent ITS-90 scale, but make the simple conversion to ITS-68 for salinity calculations.

RT is a term representing a ratio of conductivities, with further corrections applied for temperature and pressure:

R is the ratio of the conductivity of the sample of seawater (measured by the logger) to the conductivity of standard
seawater at S = 35, T = 15ºC, and P = 0: Conductivity(35, 15, 0) = 42.914 mS/cm.

Rp and rT are correction terms to adjust for in-situ pressure and temperature respectively:

RBR#0005199revL - 253

where P is the in-situ hydrostatic pressure measured in bars (RBR loggers and software account for the conversion from
decibars).

The table below gives all the coefficients required in all the above equations. These values have been empirically
determined, and are fixed: they do not need to be programmed into a data logger in any way by end users.

Table 1. Coefficients for the PSS78 equations

a b c d e

0 0.0080 0.0005 0.6766097
1 -0.1692 -0.0056 2.00564e-2 3.426e-2 2.070e-5
2 25.3851 -0.0066 1.104259e-4 4.464e-4 -6.370e-10
3 14.0941 -0.0375 -6.968e-7 0.4215 3.989e-15
4 -7.0261 0.0636 1.0031e-9 -3.107e-3
5 2.7081 -0.0144

RBR#0005199revL - 254

8 Error messages
This is a current, but partial, list of error messages which the logger can produce when responding to issued
commands. Each error message begins with Ennnn, where nnnn is a 4-digit decimal number, padded with leading
zeroes if necessary.

The number allows host software to interpret the error code as desired if the rather terse messages from the logger are
unsuitable for any reason.

Note that some messages may be followed by variable elements not shown here. The following errors have been
categorized in what is relevant to a misuse of the command set (wrong usage) and what is due to an hardware failure or
a factory misconfiguration.
In case of an hardware failure, one course of action is to apply a full hardware reset (see Tips for system integrators).

RBR#0005199revL - 255

8.1 List of error and warning messages

Error
code

Reported description Root cause

E0101 command parser busy Wrong usage
E0102 invalid command '<unknown-command-name>' Wrong usage
E0103 protected command, use 'permit command = <command>' Wrong usage
E0104 feature not yet implemented Wrong usage
E0105 command prohibited while logging Wrong usage
E0107 expected argument missing Wrong usage
E0108 invalid argument to command: '<invalid-argument>' Wrong usage
E0109 feature not available Wrong usage
E0110 buffer full Wrong usage/Hardware

failure
E0111 command failed Hardware failure
E0114 feature not supported by hardware Wrong usage

E0301 memory erase not completed Hardware failure

E0401 estimated memory usage exceeds capacity This is a warning only
E0402 memory not empty, erase first Wrong usage
E0403 end time must be after start time Wrong usage
E0404 end time must be after current time Wrong usage
E0405 failed to enable for logging Hardware failure
E0410 no sampling channels active Wrong usage
E0411 period not valid for selected mode Wrong usage
E0412 burst parameters inconsistent Wrong usage
E0413 period too short for serial streaming Wrong usage
E0414 thresholding interval not valid Wrong usage
E0415 more than one gating condition is enabled Wrong usage
E0416 wrong regimes settings Wrong usage
E0417 no gating allowed with regimes mode Wrong usage
E0418 cast detection needs a pressure/depth channel Wrong usage
E0419 calibration coefficients are missing Factory

misconfiguration
E0420 required channel is turned off; <channel-index> Wrong usage
E0421 raw output format not allowed Wrong usage
E0422 AUX1 not available in current serial mode Wrong usage
E0423 wrong ddsampling settings Wrong usage
E0425 invalid settings Wrong usage
E0426 postprocessing already active Wrong usage
E0427 wrong memory format Wrong usage

RBR#0005199revL - 256

Error
code

Reported description Root cause

E0428 postprocessing reference channel not available Wrong usage

E0501 item is not configured Factory
misconfiguration

E0505 no channels configured Factory
misconfiguration

E0601 no calibration for channel '<channel-index>' Factory
misconfiguration

"700" messages apply only if control of external devices is supported.
E0701 device error: <details> Hardware failure
E0702 no devices configured Factory

misconfiguration
E0703 device schedule inconsistent Wrong usage
E0704 device is not enabled Wrong usage
E0705 multiple operations not supported: '<extra-operation>' Wrong usage

	Table of Contents
	Introduction
	Document version history
	Formatting
	Security
	Command Processing and Timeouts
	Command Entry
	Timeouts, Output Blanking and Power Saving
	Parsing logger responses
	Parameter Modification

	Quick start
	General overview
	Channels
	Acquiring samples

	Enabling continuous sampling
	Enabling wave sampling
	Serial streaming from serial port
	Setting the correct baud rate
	Enabling the serial streaming

	Download stored data
	Downloading an EasyParse dataset
	Starting a deployment using EasyParse
	Downloading the dataset

	Integrating with a profiling float
	Introduction
	Buoyancy control
	Setup for ascent, enable logging
	End of ascent, disable logging and download data
	More details on the calculation
	Available output channels
	Post-processing onboard
	Providing platform details to end-users
	Sensor drift monitoring at surface
	Energy tracking

	High resolution BPR and frequency counters for cabled ocean observatories
	Introduction
	Deploying a frequency counter/BPR logger running continuously at 1Hz and streaming over serial
	BPR channels
	Operating an RBRquartz³ BPR|zero instrument

	Migrate from L2 to L3 platform
	Introduction
	Identifying the L3 platform
	Deprecated commands
	Removed commands
	Improved commands and new parameters
	Removed parameters
	Syntactical changes

	Tips for system integrators
	Default deployment start and end time
	Sampling rates
	Future proofing development
	Power management and power cycling behavior
	Memory format
	Error handling
	Electronic Static Discharge

	Commands
	Time and Schedule
	clock
	sampling
	deployment
	pauseresume
	pause
	resume

	Gated Sampling
	thresholding
	twistactivation

	Vehicle support
	regimes
	regime
	ddsampling

	Real time data
	outputformat
	streamusb
	streamserial

	Deployments
	verify
	enable
	disable
	simulation

	Memory and Data Retrieval
	meminfo
	memclear
	memformat
	readdata
	postprocessing
	postprocessing_regimes
	postprocessing_regime

	Configuration Information and Calibration
	channels
	channel
	settings
	calibration
	sensor
	valve
	valvesegments
	valvesegment
	uvled

	Communications
	link
	serial
	sleep
	wifi

	Other Information
	id
	help
	hwrev
	power
	powerinternal
	powerexternal
	info
	getall

	Data sample
	fetch

	Security and Interaction
	permit
	prompt
	confirmation
	reboot

	Format of Stored Data
	Overview
	Standard format
	EasyParse format

	EasyParse "calbin00" format
	EasyParse format
	EasyParse

	Standard "rawbin00" format
	Deployment Header
	Standard format
	Standard format

	Profile detection events generation

	Supported Channel Types
	Calibration Equations and Cross-channel Dependencies
	Core Equations
	lin, or Linear
	qad, or Quadratic
	cub, or Cubic
	tmp, or Temperature

	Specialized Equations
	corr_rinkotemp - Temperature measured by a Rinko DO sensor
	corr_metstemp - Temperature measured by a METS (methane sensor)
	optic2 - optical parameters measured by a Satlantic OCR sensor

	Dependent Equations
	Example 1: corr_pH - Simple temperature correction of pH
	Example 2: corr_pH - pH correction without Temperature
	Example 3: corr_pres2 - Temperature correction of Pressure
	Example 4: corr_cond - Conductivity corrections
	Example 5: corr_rinko - Correction of Rinko Dissolved Oxygen using Rinko Temperature sensor
	Example 6: corr_rinkoT - Correction of Rinko Dissolved Oxygen using logger Temperature sensor
	Example 7: pss78 - derivation of Practical Salinity (1978)
	Example 8: seapres - derivation of sea pressure from pressure
	Example 9: depth - derivation of depth from pressure
	Example 10: corr_metsmeth - Temperature correction of METS methane output
	Example 11: corr_rinkoB - Correction of Rinko Dissolved Oxygen using Rinko Temperature sensor
	Example 12: corr_rinkoTB - Correction of Rinko Dissolved Oxygen using logger Temperature sensor
	Example 13: deri_sos, speed of sound
	Example 14: deri_speccond, specific conductivity
	Example 15: deri_bprpres and deri_bprtemp, BPR channels
	Example 16: distancefromechotiming Distance from echo timing
	Example 17: corr_o2conc_garcia, O2 concentration compensated for salinity and pressure
	Example 18: deri_o2sat_garcia, Derived O2 saturation from concentration
	Example 19: corr_cond1 - Conductivity corrections for deep CT cell
	Example 20: corr_cond2 - Conductivity corrections for CT cell
	Example 21: corr_cond3 - Conductivity corrections for RBRLegato and 6000dbar C and CT cell
	Example 22: corr_pres5 - Temperature correction of Pressure
	Example 23: corr_irr - Irradiance
	Example 24: corr_irr2 - generic irradiance and PAR
	Example 25: deri_dyncorrT and deri_dyncorrS dynamic correction channels

	Supporting Material
	Practical Salinity of Seawater

	Error messages
	List of error and warning messages

