

RBR Webinar Series

RBRquartz³ BPR | zero: a "zero" drift bottom pressure recorder

Pressure gauges

Piezo-resistive Economical Moderate accuracy Moderate resolution

Quartz resonators Not economical High accuracy Resolution a function of integration time

Bourdon tube – accurate high pressure measurements

Force-Sensing Quartz Crystal

Temperature-Sensing Quartz Crystal

Pressure and temperature frequency counter 10ppb resolution (1s sampling period)

0.01%FS accuracy Ratings up to 7000dbar Ø60 x 540mm

Secular strain accumulation and discrete slip events observable in hydrologically isolated formations

Year

RBRquartz³ APT

RBR quartz³

10ppb pressure AND acceleration 16Hz max sampling period tilt of nanoradians

Relationships between pressure and ground motion

Seismic waves: Pressure driven by acceleration

Microseisms (at their source): Acceleration driven by pressure

Figure 7 | Comparison of spectra of acceleration (a) and pressure variations (b) calculated for a 1-hour segment of data spanning the records shown in Figure 6. Upper and lower background spectra of Peterson (1993) are shown as dashed lines. Correlation between APT acceleration and pressure seen in Figure 5 is confirmed by coherence between acceleration and pressure near unity within microseismic and infragravity bands (c).

KKK

How to correct drift?

- Looking for signals in sea level rise OR geodesy of mm/year
- BUT drift is cm/year
- Drift is pure offset
- Reference measurement can be made at any pressure
- Earl Davis made seafloor comparisons (~10-100dbar delta) for relative alignment
- Glenn Sasagawa put a dead weight tester on the bottom (~0dbar delta)
- A-0-A use "zero" as the reference. Atmospheric pressure inside the instrument.

 \mathbf{R}

- Quartz drift is a function of full scale so use a barometer (full scale = 11dbar)
- Need to switch thousands of dbar from marine to 'atmospheric' reference

Schematic diagram of the A-0-A instrument deployed at Axial Seamount on the OOI Cabled Array.

 $\mathsf{R}\mathsf{R}$

RBRquartz³ BPR | zero

Explore the RBRquartz³ BPR | zero

RBRquartz³ BPR | zero

- Medium size instrument ø140 x 700mm
- Titanium housing
- Pressure ranges to max of 7000m
- 10ppb resolution 10μm in 1km water

- RBRfermata pure power
- RBRcervata power and storage
- ROV example of 'sneakernet'

All the RBR standards

- USB-C internal connection
- RS-232
- RS-485
- Ethernet
- Observatory connector options (MINK)
- External power packs (RBR*fermata*)
- External power and download packs (RBRcervata)

RRR

Many thanks to...

• Earl Davis, Bob Meldrum, Martin Heeseman, Joe Farrugia, John Dorocicz, John Bennest

KRR

- William Wilcock, Dana Manalang, Geoff Cram, Mike Harrington
- Jerry Paros, Paul Miglacio
- RBR BPR Team

Thank You

Contact Us

RBR rbr-global.com info@rbr-global.com +1 613 599 8900