

Assessment of RBR coda T.ODO performance on long-term deployment and profiling in Bedford Basin

Eric Siegel, Rui Zhang, Mark Halverson, Jon Taylor, Greg Johnson

- T.ODO introduction
- Sensor technology
- Field validations
 - Moored
 - Profiling
- Applications
- Questions

RBR*coda* T.ODO

Optical accuracy and stability similar to Aanderaa Optode

Standard accuracy: 8 µmol/l

High accuracy temperature measurement

Power consumption: only 36 mJ/sample

Rated to 6000m

Wiper available for |slow

Time constant options

Standard 8s response

|slow 30s response (moored)

RBR*coda* T.ODO

Optical accuracy and stability similar to Aanderaa Optode

Standard accuracy: 8 µmol/l

High accuracy temperature measurement

Power consumption: only 36 mJ/sample

Rated to 6000m

Wiper available for |slow

Interface

• RS-232 polled or autonomous streaming

Output values

- Temperature (°C)
- Dissolved O2 concentration (µmol/l)
- Dissolved O2 concentration (salinity comp (µmol/l))
- Dissolved O2 saturation (%)
- Dissolved O2 phase (°)

RBR*duet*³ T.ODO

Optical accuracy and stability similar to Aanderaa Optode

Standard accuracy: 8 µmol/l

High accuracy temperature measurement

Power consumption: only 36 mJ/sample

Rated to 6000m

Wiper available for |slow

Time constant options

Standard 8s response

|slow 30s response (moored)

Sensor Technology

Luminescence quenching by molecular oxygen

RBR coda T.ODO

Ruthenium(II) complex

Platinum octaethylporphyrin

fast

- Tau ~1sec (Temperature dependent)
- Drift <0.6 μmol/l per month (2.5 million samples)

regular & |slow

- Tau ~8, 30 sec (Temperature dependent)
- Drift negligible

RBR coda T.ODO - Calibration

Dissolved Oxygen calibration

• 49 plateaus

Temperature range: 1.5 − 30 °C

• Saturation: 0 – 120%

Residuals: < 4 μmol/l

Temperature

Accuracy: 0.002 °C

Range: -5 to 35°C

RBR*coda* T.ODO - Customer calibration

Equations used by the RBR DO Sensor

<u>Eq. 2</u>

Why Bedford Basin?

Compass Buoy Station (44°41'37"N, 63°38'25"W)

Strong seasonal variation of dissolved oxygen

Mooring

RBR

Deployed in partnership between Dalhousie University and DFO Bedford Institute of Oceanography

Mooring

- RBR coda T.ODO|slow (30s time constant)
- SBE-37 CTD
- 60m depth
- Sep Dec 2018
- Sample at 1Hz for the first minute of every hour

Profiling

- Bedford Basin Monitoring Program
- Weekly vertical profiles over mooring
- Date: Oct 24, 2018
- Instruments:
 - RBR coda T.ODO (8s time constant)
 - RBRcoda T.ODO fast (1s time constant)
 - SBE-25 CTD
 - SBE-43 DO
 - Water bottles

Instruments and deployment

Results - Mooring

Results - Profiling

-1

-0.5

0

0.5

1.5

Results - Profiling

$$T = T_m + \tau \frac{dT_m}{dt}$$

Field Validation Summary

> T.ODO|slow - Stable for mooring application

> T.ODO|fast - Accurate for profiling application

T.ODO standard – Expected time constant lag during profiling which can be improved in post-processing

Acknowledgements

- Coastal Environmental Observation Technology and Research (Dalhousie University)
 - Richard Davis, Madison Evans, Darrell Adams, Anna Haverstock

- Bedford Institute of Oceanography
 - Clark Richards, Kevin Pauley, Andrew Cogswell, Peter Thamer
 - Captain and crew of Sigma T

Fisheries and Oceans Canada

Applications

T.ODO|fast

Vertical Profiling

T.ODO

Vehicles & Floats

T.ODO|slow

Moorings

Vertical Profiling

T.ODO|fast

Vertical Profiling

Photo from Nature Trust of British Columbia

T.ODO|fast

T.ODO

Kongsberg/Hydroid Seaglider

T.ODO

Data from AMT

RBRsaildrone³ CTD with RBRcoda T.ODO

Moorings

Photo from UC Davis Tahoe Environmental Research Center

Zebra-Tech Hydro-Wiper

T.ODO|slow

Thank You

Contact Us

RBR
rbr-global.com
info@rbr-global.com
+1 613 599 8900

