

RBR rbr-global.com

Multi-parameter observations and telemetry with the DMO Wirewalker

Greg Johnson, Chris Kontoes, Drew Lucas

Outline

Motivation

Sensor system – RBRconcerto CTD++

Mechanical system – DMO WW

Data & Telemetry system – RBRcervello, datahosting

Science

Product Family

Compact instrument

- RBRsolo T/D/DO/PAR
- RBRduet T.D
- tide and wave variants
- 25M readings on any AA battery

Standard instrument

- RBRconcerto (3-5 channels)
- RBRmaestro (6-10 channels)

One app to rule them all: Ruskin

RBRconcerto CTD

twist activation
direction dependent sampling
Any AA
USB-C

RBR concerto CTD++

Dissolved oxygen

Backscatter / turbidity

Chlorophyll

рН

PAR

narrow band (ir)radiance

RBR

RBR*fermata*

"to prolong beyond the normal duration"

56 D-cell pack

1kWh alkaline

3kwH lithium

drawings included for your own pack construction

RBR

THE WIREWALKER

AN INTRODUCTION TO WAVE POWERED PROFILING

SURFACE BUOY

36" (0.9m) Diameter 600lb (275kg) of Buoyancy 10" (0.25m) Dia. Well GPS Beacon Flasher

JACKETED WIRE ROPE

3/16" (5mm) Diameter
Wire Terminations
Standard or
Hammerhead
Turnaround Stopper
Assemblies

SUSPENDED WEIGHTS

2 x 45lb (20kg) weights

WIREWALKER PROFILER

Dims: 62" x 24" x 6.5"
Rapid Profiling
Zero Power
Decoupled on Ascent
Free-Drift or Moored
Protective Cowlings

Customized Instrument Clamps

Profiling Cam

Leading Edge Cowling

Wirewalker Buoyant Foam

Trailing Edge Cowling

Wirewalker Buoyancy

RBRfermata (Batteries)

CTD
*Facing Up

WIREWALKER SUMMARY

Zero Power
Rapid Profiles
Decoupled on Ascent
Flexible Payload
Numerous Scientific
Applications

APPLICATIONS

- Biophysical Interactions
- Biogeochemistry
- Ocean mixing
- Microstructure
- Internal Waves
- Harmful Algal Blooms
- Oil Response & Science
- Plume Monitoring
- Aquaculture
- Tactical Oceanography
- Limnology

ADCP

RBRssm attached to RBRconcerto

RBRfermata (Batteries)

Wirewalker Buoyancy

Buoy induction

Topside

RBR*cervello* – the brains of the operations

Hands off operation – power and go

Internal storage

USB stick transfer for download

USB stick transfer for deployment changes

GSM when in range

Iridium when not

Debug port
Inductive test loop included

Autonomy Engine

Getting started

Retrieving data

MLM troubleshooting

GSM

Telemetry troubleshooting

Applying firmware updates

Predict your deployment length Online access from anywhere

RBR cervello Deployment Calculator

Parameters you'll likely want to change are shown in bold. Calculated/output values are shown in italics. Constant/measured values unlikely to change are shown in

Instrument deploy	ment lifetime is calculated separately in
Ruskin. However,	in order to calculate the modern duty
cycle (a prerequisi	ite for estimating its power consumption),
we must know sor	ne basic information about the
instrument to knov	v how much data it will produce.
Sample rate: 8	3 Hz
Number of chann	nels: 3
Direction-depende	ent sample reduction: 50 5 %
Efficacy of direction	n-dependent sampling depends on
configuration and	deployment conditions. See the Logger3
command reference	ce for details.
Data rate: 80	bytes/second
Mooring Line Mod	

Interval:	600	seconds
Activity di	uration: 60	s; power consumption:
0.45	W	
Average	power cor	nsumption: 0.04 W
Telemetry	y	
Interval:	1800	seconds
Telemetry	compres	sion reduction: 80 %
data colle	ected acro	on value – 80% – is based on empirical ss multiple deployments. It
data colle encompa real-work (connection delimiters telemetry compress significant compress	ected acrosses the educated acrosses the educated acrosses and any drops/outsion (quantity more educated acrosses across	on value – 80% – is based on empirical as multiple deployments. It effects of not only compression, but also by overhead from the messaging protocolata, diagnostic data, message repeated data transmitted due to tages. Strictly speaking, the actual attraction + differential encoding) is effective, but to show only the would be a misrepresentation of the true
data colle encompa real-work (connection delimiters telemetry compress significan compress amount o	ected acrosses the educated acrosses the educated acrosses and any drops/outsion (quantity more educated acrosses across	on value – 80% – is based on empirical as multiple deployments. It effects of not only compression, but also by overhead from the messaging protocolata, diagnostic data, message repeated data transmitted due to tages. Strictly speaking, the actual attization + differential encoding) is effective, but to show only the would be a misrepresentation of the true
data colle encompa real-work (connection delimiters telemetry compress significan compress amount of	ected acrosses the ed telemetry on metada and any drops/out tion (quantity more easion ratio vif data trant, use "-5%	on value – 80% – is based on empirical as multiple deployments. It effects of not only compression, but also by overhead from the messaging protocolata, diagnostic data, message repeated data transmitted due to tages. Strictly speaking, the actual attization + differential encoding) is effective, but to show only the would be a misrepresentation of the true asferred.

Modem: Iridium RUDICS

curl --location --remote-name --remote-header-name --compressed 'http://data.rbr-global.com/rbr/download/080296?from=2016-09-08&to=2016-09-09'

IN2019_V06

Data at home

RBR data hosting service

GSM or Iridium feeds

Cloud hosting (both in North America and China)

Simple daily charts

API to pull data

curl example

shell scripts for periodic sync

easy to get all data to ship during cruise

ge: 50 <customer> <serial> <start> <end> foutput] If the output filename is not provided, output will be written to Example: \$0 rbr 110099 2017-09-05 2020-12-31 DH_INSTANCE="https://data.rbr-global.com" [-2 "SUPDATE_PERIOD" UPDATE_PERTOD#688 # second

[SW -2r 4] | [S1 - "-h"] | [S1 - "--help"]

Drew Lucas, Scripps

The Dynamics are in the Details: a decade of ocean exploration with the Wirewalker Profiler

Drew Lucas, Ph.D.^{1,2}

Assistant Professor

UCSan Diego

JACOBS SCHOOL OF ENGINEERING

Mechanical and Aerospace Engineering

co-founder and principal:

¹Marine Physical Laboratory, Scripps Institution of Oceanography and ²Department of Mechanical and Aerospace Engineering University of California, San Diego, CA USA

The ocean is variable in all three spatial dimensions and time.

Layers in the ocean move vertically under the influence of waves and currents.

A "natural" frame of reference for the ocean is moving with the layers (isopycnal frame of reference)

Let's take a closer look....

SOUTH AFRICA 2010/2011 Mooring array

Wirewalker wave-powered profiling vehicle

The Wirewalker is a SIO-developed wave-powered vertical profiler.

WW has a flexible payload, with rapid profiling powered by environmental energy.

acknowledgements: UCT and DAFF

SOUTH AFRICA 2010/2011 Mooring array

Wirewalker wave-powered profiling vehicle

The Wirewalker is a SIO-developed wave-powered vertical profiler.

WW has a flexible payload, with rapid profiling powered by environmental energy.

acknowledgements: UCT and DAFF

Wirewalker observations

Wirewalker observations

Lucas et al. 2014 *DSRII, Pitcher et al. 2014 JGR* See also Lucas et al. 2011, Limnol. Ocean.

Wirewalker and the Coastal Ocean

Biological Response

Southern Southern California Bight:

Stratified throughout the year.

Semidiumal variability large relative to the sub-inertial.

Coastal ecosystems powered by the internal tide.

"Green tide" offshore of Scripps Institution of Oceanography

Photo: Eddy Kisfauldy

Alberty, M. S., Billheimer, S., Hamann, M. M., Ou, C. Y., Tamsitt, V., Lucas, A. J., and Alford, M. H. (2017), A reflecting, steepening, and breaking internal tide in a submarine canyon, J. Geophys. Res. Oceans, 122, 6872-6882, doi:10.1002/2016JC012583.

Wirewalker and the Coastal Ocean

La Jolla Canyon system drives a highly nonlinear transformation of the internal tide.

Fine-scale spatial and temporal effluent plume dynamics and coastal water quality assessment

There are 21 Southern California
Sanitation effluent treatment plants
discharging ~1 BILLION gallons per day
of treated effluent.

The fate and impact of pollutants in wastewater, and thus coastal water quality, are a function of both discharge dynamics and local oceanographic processes.

Wirewalkers were used to monitor wastewater diversion events at off Huntington Beach (2012, funded by NSF) and South Santa Monica Bay (2015, contract with City of LA*)

* Contract included delivery of real-time WW monitoring system

SCRIPPS INSTITUTION OF WAIR Walker and Coastal Ocean Water Quality
OCEANOGRAPHY Wirewalker and Coastal Ocean Water Quality

Complicated vertical structure of ocean currents, discharge plume, leads to complex and unpredictable dispersal.

Complicated vertical structure of ocean currents, discharge plume, leads to complex and unpredictable dispersal.

Complicated vertical structure of ocean currents, discharge plume, leads to complex and unpredictable dispersal.

The Dynamics are in the Details: a decade of ocean exploration with the Wirewalker Profiler

What's next?

Full ocean depth moorings.

Onboard electrical power generation

Miniaturization

Smart sampling, longterm or one-way deployments

Thank You

Contact Us

RBR rbr-global.com info@rbr-global.com

Del Mar Oceanographic delmarocean.com inquiry@delmarocean.com

