J. Doucette © Woods Hole Oceanographic Institution

A Fast Biophysical Underway Profiler: the EcoCTD

CALYPSO

M. Freilich, T. Farrar, B. Hodges, T. Lanagan, A.J. Baron, and A. Mahadevan

J. Doucette © Woods Hole Oceanographic Institution

A Fast Biophysical Underway Profiler: the EcoCTD

CALYPSO

M. Dever, M. Freilich, J.T. Farrar, B. Hodges, T. Lanagan, A.J. Baron, and A. Mahadevan (2020) EcoCTD for Profiling Oceanic Physical-Biological Properties from an Underway Ship Journal of Atmospheric and Oceanic Technology. DOI: 10.1175/JTECH-D-19-0145.1

What is the EcoCTD?

What is the EcoCTD?

calypsodri.whoi.edu

BACKGROUND PARTICIPANTS PROJECTS FIELD WORK

CALYPSO

Coherent Lagrangian Pathways from the Surface Ocean to Interior

ONR Departmental Research Initiative 2018-2022

General Objective

Provide **observational evidence** of exchanges of water properties between upper ocean layer and ocean interior (i.e., below the Mixed Layer)

CALYPSO

Coherent Lagrangian Pathways from the Surface Ocean to Interior

ONR Departmental Research Initiative 2018-2022

General Objective

Provide **observational evidence** of exchanges of water properties between upper ocean layer and ocean interior (i.e., below the Mixed Layer)

Hypothesis

Submesoscale instabilities at ocean fronts generate intense downwelling, leading to subduction of water

Coherent Lagrangian Pathways from the Surface Ocean to Interior

ONR Departmental Research Initiative 2018-2022

Mesoscale motions

 $t \sim$ days to months $L \sim 10$ to 1,000 km \downarrow Very weak vertical velocities

 $W \sim {
m O(1)}~{
m m/day}$

Mesoscale motions

 $t \sim$ days to months $L \sim 10$ to 1,000 km \downarrow *Very weak vertical*

velocities

 $W \sim {
m O(1)}~{
m m/day}$

https://ocean-next.github.io

Turbulent motions

 $t \sim$ seconds to minutes $L \sim$ mm to cm \Downarrow Isotropic velocities

 $\textit{W} \sim \textit{U} \sim \textit{V}$

Mesoscale motions

 $t \sim$ days to months $L \sim 10$ to 1,000 km \downarrow *Very weak vertical*

velocities

 $W \sim O(1) \; m/day$

Sumesoscale motions

 $t \sim$ hours to days $L \sim 0.1$ to 10 km \downarrow

Larg(er) vertical velocities

 $W \sim O(100) \text{ m/day}$

Turbulent motions

 $t \sim$ seconds to minutes $L \sim$ mm to cm \downarrow Isotropic velocities

 $W \sim U \sim V$

Submesoscale motions: spatio-temporal scales

- Spatio-temporal scales
 - L \sim (0.1 10 km)
 - h \sim (1 100 m)
 - t \sim (hours days)
- Awkward observational scales
 - $+\,$ too small and too fast for satellites
 - + too big and too fast for ships' CTD
- Transitional regime between quasi-geostrophic mesoscales and turbulent scales

At submeso-scales, biological and physical have similar timescales \Rightarrow biological properties can be used as semi-conservative tracers.

So we wanted something that :

 $(\underline{1})$ can profile the upper 500 m of the ocean

- $(\underline{1})$ can profile the upper 500 m of the ocean
- (2) can profile at a sub-kilometer lateral resolution

- (1) can profile the upper 500 m of the ocean
- 2 can profile at a sub-kilometer lateral resolution
- 3 has little impact on other science operations
 - (3a) can be used underway,
 - 3b is versatile; easy to deploy and recover

- (1) can profile the upper 500 m of the ocean
- 2 can profile at a sub-kilometer lateral resolution
- 3 has little impact on other science operations
 - (3a) can be used underway,
 - 3b is versatile; easy to deploy and recover
- (4) is relatively inexpensive

- (1) can profile the upper 500 m of the ocean
- 2 can profile at a sub-kilometer lateral resolution
- 3 has little impact on other science operations
 - (3a) can be used underway,
 - 3b is versatile; easy to deploy and recover
- (4) is relatively inexpensive
- 5) can sample bio-optical properties (oxygen, chlorophyll fluorescence, backscatter)

Platform (Mfg)	Depth range	max. fall rate	Time intervals (300 m profiles)	Resolution at 8 knots	Instrument weight in air	Bio-optical sensors	Real-time data	Estimated Price
Triaxus (MacArtney)	0-350 m	< 1 m/s	600 seconds	2.4 km	120-160 kg	yes	yes	\sim 1,000 k\$
SeaSoar (Chelsea)	0-500 m	< 1 m/s	600 seconds	2.4 km	~150 kg	yes	yes	N/A
ScanFish (EIVA)	0-400 [*] m	< 2 m/s	300 seconds	1.2 km	~75 kg	yes	yes	> 100 k\$
fastCTD (Valeport)	0-600°m	unknown	unknown	unknown	2.5 kg	fluorometer only	х	N/A
UCTD (Teledyne)	0-1000 ^{**} m	5 m/s	650 seconds	2.8 km	~5.5 kg	х	x	6.6 k\$
EcoCTD	0-500 ^{**} m	4 m/s	450 seconds	1.8 km	13 kg	yes	x	37 k\$

* Range only possible under winch control ** downward profiling only

UCTD Rudnick and Klinke (2007)

Modus Operandi

Example profile

- Fall rate between 3 and 4 m/s
- Slow decrease of fall rate with depth (line drag)
- Ship heaving clearly visible on upcast, is it there on downcast?

Sampling characteristics

- Two IMUs were mounted onto (1) The ship's deck,
 (2) The EcoCTD probe
- Profile collected on a day with 3-5 m waves
- Peak in auto-spectra for the ship motion (8-10 s period)
- No peaks in auto-spectra for the Probe unit
- No significant cross-covariance found in the data ⇒ Probe is free-falling!

Sampling characteristics

- Quick profile turn-over (no line-spooling required for free-fall)
- High lateral resolution
- Can be used at higher speeds, although winch might heat up after a while...

Data processing

There are important data processing steps to be considered: Sensor alignment to correct for dynamic behavior based on existing literature (Barth 1996, Ullman and Hebert 2014, Halverson et al. 2017).

Data processing

There are important data processing steps to be considered: Sensor alignment to correct for dynamic behavior based on existing literature (Barth 1996, Ullman and Hebert 2014, Halverson et al. 2017).

Field Data - the CALYPSO field site

Field Data - Section data

Field Data - Section data

1 EcoCTD collects concurrent bio-physical observations at high resolution

- (1a) Sub-kilometer resolution at slow ship-speed
- (1b) Optical channels can be customized (e.g., rhodamine, backscatter, fluorescence, etc.)

- 1 EcoCTD collects concurrent bio-physical observations at high resolution
- 2 Probe design provides high-quality data while the ship is underway
 - (2a) Need to apply important dynamic corrections

- 1 EcoCTD collects concurrent bio-physical observations at high resolution
- 2 Probe design provides high-quality data while the ship is underway
- 3 The modular and light-weight design makes it easy to deploy and recover

-) Fall-rate (i.e., vertical resolution) can be adjusted with lead-collars) Sensors can be added/removed as needed
- c) Instruments can also be used in other applications

- 1 EcoCTD collects concurrent bio-physical observations at high resolution
- 2 Probe design provides high-quality data while the ship is underway
- (\mathfrak{Z}) The modular and light-weight design makes it easy to deploy and recover

Future developmentsw

(4) Improved design for enhanced modulability

- 1 EcoCTD collects concurrent bio-physical observations at high resolution
- 2 Probe design provides high-quality data while the ship is underway
- 3 The modular and light-weight design makes it easy to deploy and recover

Future developmentsw

- (4) Improved design for enhanced modulability
- (5) Emergency Recovery System (ERS)

Thank You