




# RSKtools: A free toolbox for CTD post-processing and data visualization

Mark Halverson, PhD June 03, 2020

#### What is RSKtools?

- Free and open source tool box written in MATLAB
- Provides access to Ruskin RSK data files
  - Ruskin RSK files are SQLite databases
  - SQLite most widely deployed database engine
- Read, post-process, and visualize RBR data
- Current version: v3.4.1
- Compatible with Matlab R2013b and later
- Does not require additional paid toolboxes



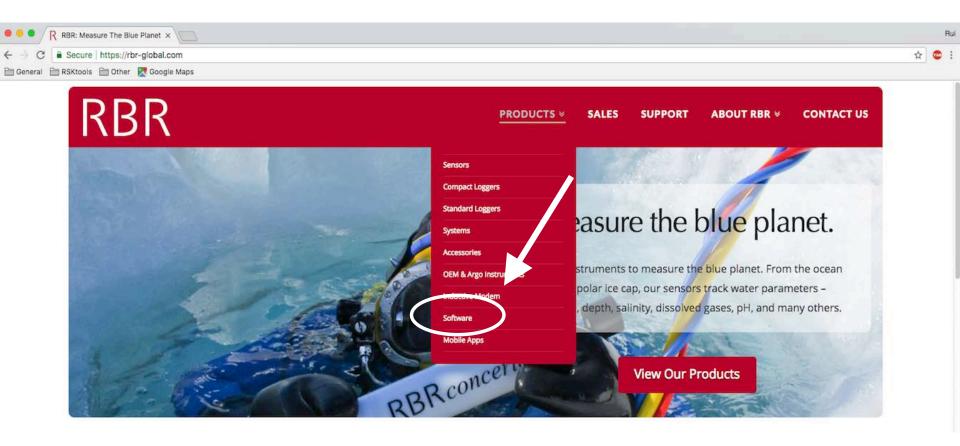




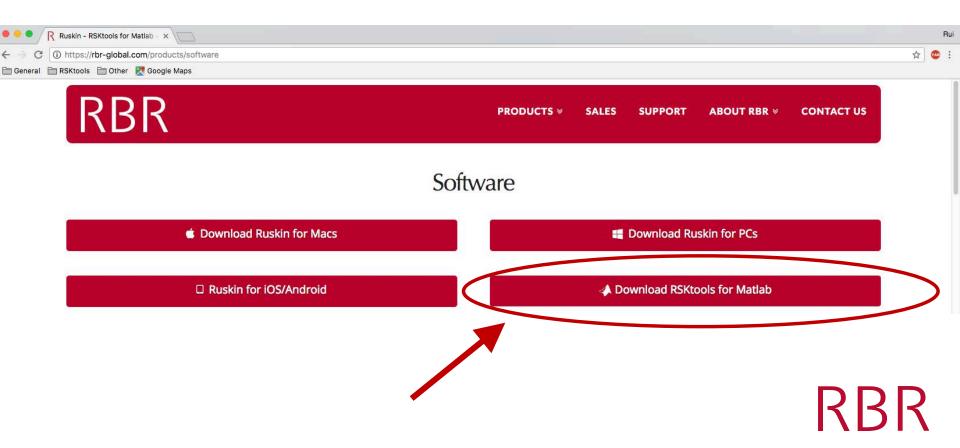


#### **Ruskin and RSKtools**

- 1. Ruskin: configure, simulate, and calibrate instruments; and download, view, annotate, and export data
- 2. RSKtools is not a replacement for Ruskin
- 3. Most important distinctions of RSKtools: data post-processing
- 4. RSKtools provides a direct link between RSK files and Matlab




#### **Outline**


- Download and installation
- Help and support
- Review the most important functions
  - > Read
  - > View
  - > Process
  - > Export



# Download: $rbr-global.com \rightarrow PRODUCTS \rightarrow Software$



#### **Download**



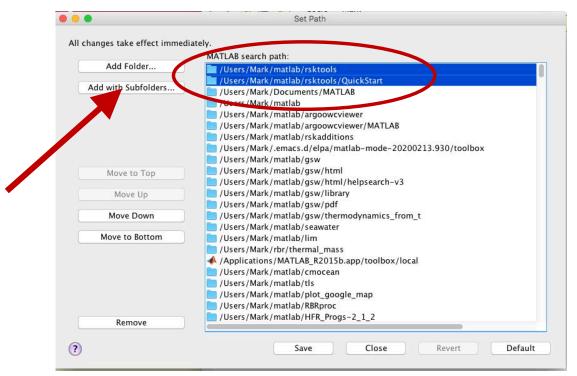
#### **Download**



The RSK format that all Logger2 and Logger3 instruments (RBRsolo, RBRvirtuoso, RBRduo, RBRconcerto, RBRmaestro) generate is not just another proprietary file format. We use a widely-used single file database called SQLite that allows us to have very large files with high-speed access to any part of the dataset. As a result, you can read RSKs from any programming language that supports SQLite. All you need to know is the schema of our table structure.

#### RSKtools for MATLAB

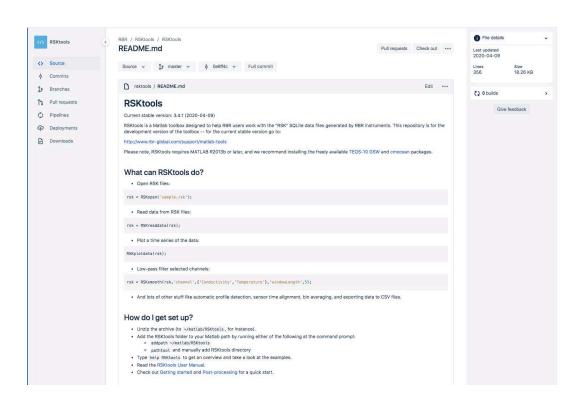
A lot has changed since our last update; therefore, we highly exparage you to read the release notes prior to download. If you're not ready to make the change, you can always download the previous version (vz.s.+1). However, the latest version (v3.0.0) offers more functionality and the previous version will no longer be supported.


Download the latest RSKtools for MATLAB

To download the previous version of PSKtools (v2.3.1) that is no longer supported, please click here.

As an example to get you started, we are happy to provide a set of M files for MATLAB that handle opening, extracting subsets of data, and plotting the results from RSK files. Download the package, unzip and type "help RSKtools" in MATLAB for more. Now with support for both 32 bit and 64 bit Windows, OS X, and Linux. Please note, RSKtools requires MATLAB R2013b or later.

#### **Installation**


- Unzip the file
- Matlab → Set Path → Add with Subfolders





### **Bitbucket repository**

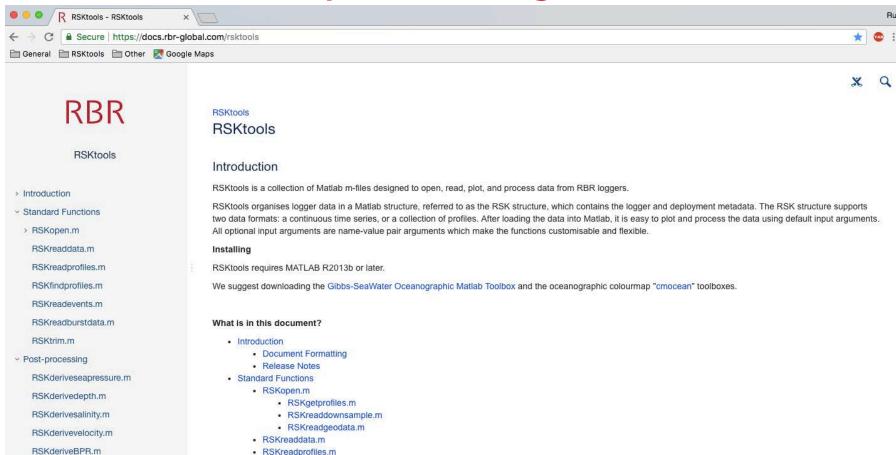
- Stay on top of the most recent developments
- Anyone can contribute





#### 49 user-faced functions in v3.4.1

#### VIEW & EXPORT OTHER READ **PROCESS** Miscellaneous **Plotters Openers and Readers** Post-Processors Calculators **RSKcreate RSKplotdata RSKsettings RSKopen** RSKderivedepth RSKcalculateCTlag **RSKplotprofiles** RSKaddchannel RSKreaddata RSKderivesalinity RSKalignchannel **RSKimages RSKaddstationdata RSKreadprofiles** RSKderiveseapressure RSKbinaverage RSKplotTS RSKappendtolog RSKreadburstdata RSKderivevelocity RSKcorrecthold **RSKplotburstdata RSKremovecasts RSKreadcalibrations RSKderiveBPR** RSKcorrectTM RSKplotdownsample **RSKprintchannels RSKfindprofiles** RSKderiveC25 RSKcorrecttau RSKtimeseries2profiles RSKderiveQ2 **RSKdespike Exporters** CSV2RSK RSKderivebuoyancy RSKremoveloops Help RSKsmooth RSKderivesigma **RSKderiveSA** RSKtrim RSK2CSV Contents RSK2ODV RSKderivetheta RSKgenerate2D README.md RSKderivesoundspeed RSKcentrebursttimestamp RSK2RSK QuickStart/Standard RSK2MAT QuickStart/Postprocessing




# **Help and Support**

- QuickStart demo
  - Getting started with RSKTOOLS (pdf)
  - Post-processing RBR data with RSKtools (pdf)
- Online manuals
  - docs.rbr-global.com/rsktools
- type help RSKtools in the MATLAB command window
- Bugs: <u>support@rbr-global.com</u>



# Online manuals - https://docs.rbr-global.com/rsktools



RSKfindprofiles.m.

# Help from the Matlab command window help rsktools help RSKdespike

```
Command Window
 >> help rsktools
   rsktools
   Version 3.0.0 2018-11-14
   1. This toolbox depends on the presence of a functional mksqlite
   library. We have included a couple of versions here for Windows (32 bit/
   64 bit), Linux (64 bit) and Mac (64 bit). If you might need to compile
   another version, the source code can be downloaded from
   https://sourceforge.net/projects/mksqlite/files/. RSKtools currently uses
   mksglite Version 2.5.
   2. Opening an RSK file. Use RSKopen with a filename as the argument:
   RSK = RSKopen('sample.rsk'):
   This generates an RSK structure with all the metadata from the database.
   and a downsampled version of the data. The downsampled version is useful
   for generating figures of very large data sets.
   Use RSKreaddata to read data from the RSK file:
   RSK = RSKreaddata(RSK, 't1', <starttime>, 't2', <endtime>);
   This reads a portion of the 'data' table into the RSK structure
    (replacing any previous data that was read this way). The <starttime>
   and <endtime> values are the range of data to be read. Depending on the
   amount of data in your dataset, and the amount of memory in your
   computer, you can read bigger or smaller chunks before Matlab will
    run out of memory. The times are specified using the Matlab 'datenum'
   format. You will find the start and end times of the deployment useful
   reference points - these are contained in the RSK structure as the
   RSK.epochs.starttime and RSK.epochs.endtime fields.
   4. Plot the data!
   RSKplotdata(RSK)
```

```
Command Window
 >> help RSKdespike
   RSKdespike - Despike a time series.
   Syntax: [RSK, spike] = RSKdespike(RSK, channel, [OPTIONS])
   Identifies and treats spikes using a median filtering algorithm. A
   reference time series is created by filtering the input channel with
   a median filter of length 'windowLength'. A residual ("high-pass")
   series is formed by subtracting the reference series from the
   original signal. Data in the reference series lying outside of
   'threshold' standard deviations are defined as spikes. Spikes are
   then treated by one of three methods (see below).
   Inputs:
     [Required] - RSK - Structure containing logger data.
                  channel - Longname of channel to despike (e.g.,
                        temperature, salinity, etc)
     [Optional] - profile - Profile number. Default is all available
                        profiles.
                  direction - 'up' for upcast, 'down' for downcast, or
                        'both' for all. Default is all directions available.
                  threshold - Amount of standard deviations to use for the
                        spike criterion. Default value is 2.
                  windowLength - Total size of the filter window. Must be
                        odd. Default is 3.
                  action - Action to perform on a spike. The default is
                        'nan', whereby spikes are replaced with NaN. Other
```

### Introduction to RSKtools functions

CTD data post-processing example

# Simplified CTD data post-processing pipeline:

**RSKplotprofiles** 

RSK2CSV, RSK2RSK, RSK2ODV

Visualize processed data

10

11

Export

|   | Step                              | RSKtools functions                                         | See also                                                    |
|---|-----------------------------------|------------------------------------------------------------|-------------------------------------------------------------|
| 1 | Open RSK file and read data       | RSKopen, RSKreadprofiles,<br>RSKreaddata, RSKprintchannels | RSKtimeseries2profiles,<br>RSKreadburstdata                 |
| 2 | Visualize raw data                | RSKplotprofiles                                            | RSKplotdownsample, RSKplotdata                              |
| 3 | Add station metadata              | RSKaddstationdata                                          |                                                             |
| 4 | Calculate sea pressure and depth  | RSKderiveseapressure, RSKderivedepth                       |                                                             |
| 5 | Low pass filter C & T             | RSKsmooth                                                  |                                                             |
| 6 | Align temperature to conductivity | RSKalignchannel                                            | RSKcalculateCTlag, RSKcorrecttau                            |
| 7 | Remove ship heave ("loops")       | RSKderivevelocity, RSKremoveloops                          | RSKdespike                                                  |
| 8 | Derive variables                  | RSKderivesalinity, RSKderivetheta,<br>RSKderivesigma       | RSKderiveC25, RSKderivesoundspeed, RSKderiveO2, RSKderiveSA |
| 9 | Bin average by depth              | RSKremovecasts, RSKbinaverage                              |                                                             |

RSKplotdata, RSKimages, RSKplotTS

**RSK2MAT** 

- > Read
- > View
- > Process
- > Export



#### **RSKopen**

```
rsk = RSKopen('sample.rsk');
```

• Extract metadata such as channel information, profile start and end times, serial number, sampling rate, etc.

#### **RSKreaddata**

```
rsk = RSKreaddata(rsk, 't1', tstart, 't2', tend);
```

• Read data from all channels as a *time series*. Optionally specify start and end times to read select periods.

# **RSKreadprofiles**

```
rsk = RSKreadprofiles(rsk,'profile',1:4,'direction','down');
```


 Uses profile "events" from Ruskin to read the data and store as profiles



#### **RSKopen**

```
rsk = RSKopen('sample.rsk');
```

- dbInfo
  - version, format, file and path
- channels
  - channel name, unit
- continuous
  - sampling rate
- profiles
  - profile start and end times
- instruments
  - instrument name
  - instrument serial number
- **■** log
  - data processing log





### **RSKprintchannels**

RSKprintchannels(rsk)

Display important information about the instrument and dataset

>> RSKprintchannels(rsk)

Model: RBRconcerto Serial ID: 80231

Sampling period: 0.167 second

| index | channel        | unit        |  |
|-------|----------------|-------------|--|
| 1     | 'Conductivity' | 'mS/cm'     |  |
| 2     | 'Temperature'  | ' ° C '     |  |
| 3     | 'Pressure'     | 'dbar'      |  |
| 4     | 'Dissolved 02' | 1%1         |  |
| 5     | 'Turbidity'    | 'NTU'       |  |
| 6     | 'PAR'          | 'µMol/m²/s' |  |
| 7     | 'Chlorophyll'  | 'μg/l'      |  |



#### **RSKreaddata**

```
rsk = RSKreaddata(rsk);

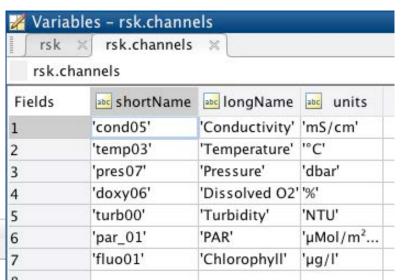
Or

tstart = datenum(2014, 05, 03);

tend = datenum(2014, 05, 04);

rsk = RSKreaddata(rsk, 't1', tstart, 't2', tend);
```

• Data subset specified by start time t1 and end time t2.




#### rsk.data

- Row: number of data samples
- Column: number of channels



|    | 1       | 2       | 3       | 4       | 5      | 6      | 7      |
|----|---------|---------|---------|---------|--------|--------|--------|
| 1  | 39.9973 | 16.2695 | 10.1034 | 51.1352 | 5.0452 | 4.6909 | 0.6533 |
| 2  | 39.9873 | 16.2648 | 10.1266 | 51.1329 | 4.5730 | 4.6886 | 1.9782 |
| 3  | 39.9887 | 16.2553 | 10.1247 | 51.1581 | 4.1794 | 4.6923 | 1.3185 |
| 4  | 39.9896 | 16.2555 | 10.1135 | 51.1587 | 4.1472 | 4.6913 | 1.6329 |
| 5  | 39.9860 | 16.2546 | 10.1078 | 51.1821 | 4.0244 | 4.6935 | 1.7083 |
| 6  | 39.9823 | 16.2579 | 10.1192 | 51.1562 | 3.9114 | 4.6904 | 1.5414 |
| 7  | 39.9732 | 16.2548 | 10.1165 | 51.1613 | 3.9796 | 4.6918 | 1.1302 |
| 8  | 39.9711 | 16.2321 | 10.1238 | 51.1861 | 4.3580 | 4.6917 | 0.8489 |
| 9  | 39.9746 | 16.2248 | 10.1254 | 51.1920 | 4.7382 | 4.6917 | 1.2072 |
| 10 | 39.9674 | 16.2322 | 10.1021 | 51.1833 | 4.4421 | 4.6943 | 1.7820 |
| 11 | 39.9550 | 16.2309 | 10.1107 | 51.1937 | 4.3361 | 4.6928 | 1.9826 |

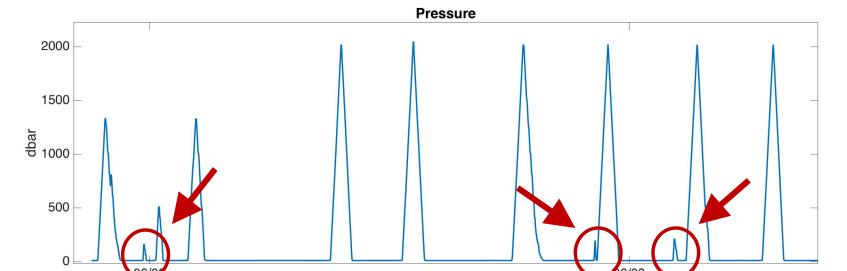




# **RSKreadprofiles**

```
rsk = RSKreadprofiles(rsk,'profile',[1:4],'direction','both');
```

- Either logger or Ruskin detects profiles and stores start and end time of each cast
- RSKreadprofiles uses that information to directly read data into profiles


|   | 🔏 Variable       | es – rsk.data |              |               |   |  |
|---|------------------|---------------|--------------|---------------|---|--|
|   | rsk × rsk.data × |               |              |               |   |  |
| d | rsk.data         |               |              |               |   |  |
|   | Fields           | † tstamp      | 🖆 values     | abc direction |   |  |
|   | 1                | 292x1 double  | 292x7 double | 'down'        | 1 |  |
|   | 2                | 156x1 double  | 156x7 double | 'up'          | 1 |  |
|   | 3                | 314x1 double  | 314x7 double | 'down'        | 2 |  |
|   | 4                | 116x1 double  | 116x7 double | 'up'          | 2 |  |
|   | 5                | 363x1 double  | 363x7 double | 'down'        | 3 |  |
|   | 6                | 166x1 double  | 166x7 double | 'up'          | 3 |  |
|   | 7                | 314x1 double  | 314x7 double | 'down'        | 4 |  |
|   | 8                | 173x1 double  | 173x7 double | 'up'          | 4 |  |



# RSKtimeseries2profiles

rsk = RSKtimeseries2profiles(rsk, 'pressureThreshold', 200);

- Reorganize time series created by RSKreaddata into profiles
- Useful when profile events were not correctly detected by logger/Ruskin
- Cast detection parameters can be tuned to for specific data sets



#### **RSKaddstationdata**

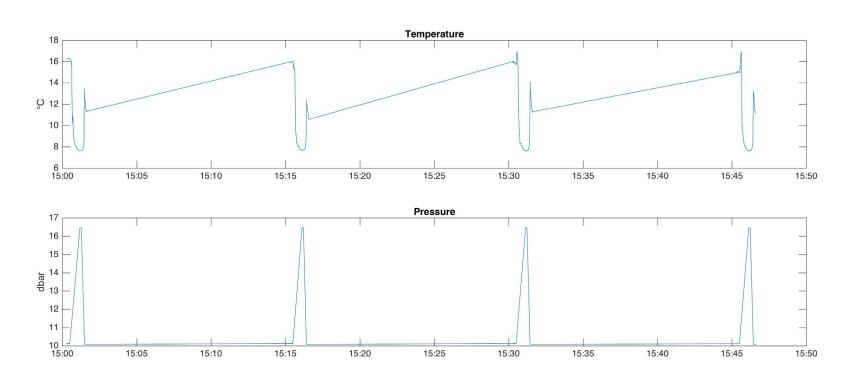
```
stations = \{'S1', 'S2', 'S3', 'S4'\};
rsk = RSKaddstationdata(rsk,'cruise', {'Repeat
line'}, 'Station', stations, 'latitude', lat vec, 'longitude', lon ve
C);
                                      >> disp(rsk.data(1))
                                                tstamp: [21x1 double]
                                                 values: [21x12 double]
                                              direction: 'up'
                                          profilenumber: 1

    Note this data is exported into the

                                               latitude: 45
 header by RSK2CSV.
                                              longitude: -25
                                                station: {'SK1'}
                                                 cruise: {'Skootamatta Lake 1'}
```

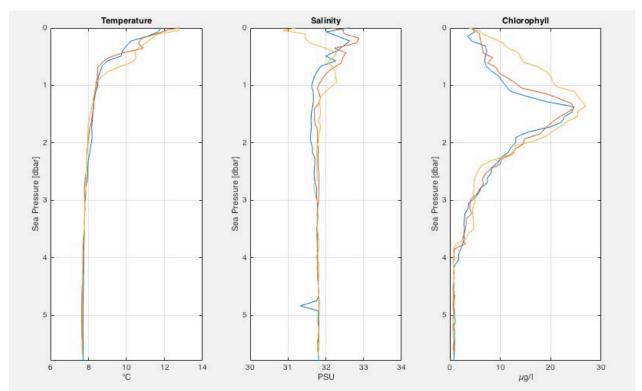
vessel: {'R/V RBR'}

samplesinbin: [21x1 double]


comment: []

- **≻**Read
- **≻View**
- **Process**
- > Export



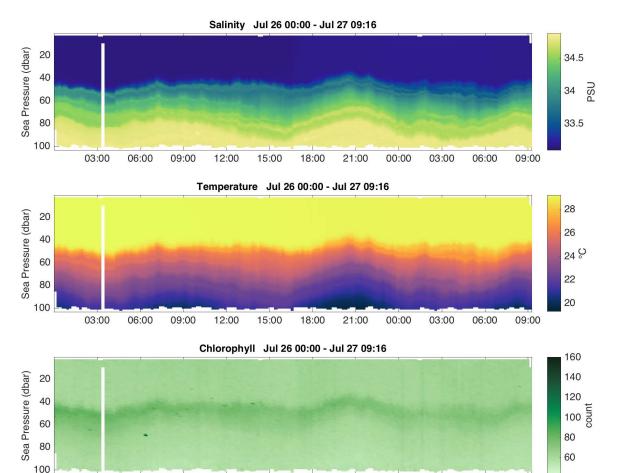

# **RSKplotdata**

RSKplotdata(rsk, 'channel', {'temperature', 'pressure'});



# **RSKplotprofiles**

```
RSKplotprofiles(rsk, 'channel', {'temperature', 'salinity', 'chlorophyll'}, 'profile', [1 5 10], 'direction', 'down');
```






# **RSKimages**

```
RSKimages(rsk,
'direction','up')
```

 Requires bin averaging the profiles (RSKbinaverage)



03:00

06:00

12:00

09:00

15:00

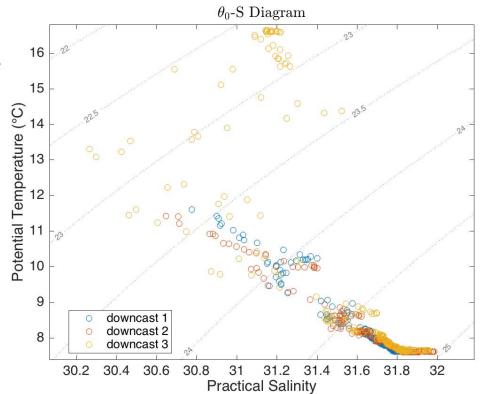
18:00

21:00

00:00

03:00

06:00


09:00

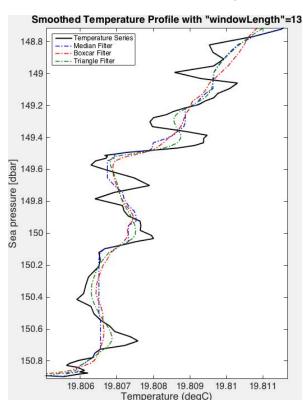
# **RSKplotTS**

```
RSKplotTS(rsk, 'profile', 1:3, 'direction', 'down');
```

handles = RSKplotTS(rsk,...);

outputs line handles to for customization



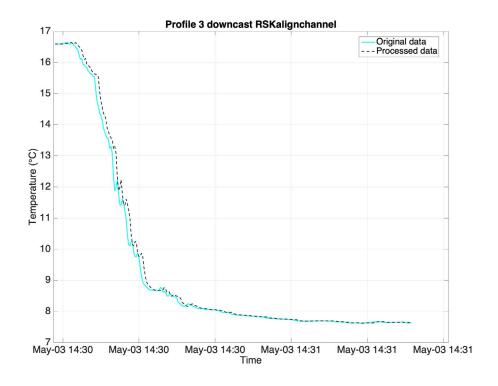

- **≻**Read
- **≻View**
- **Process**
- > Export



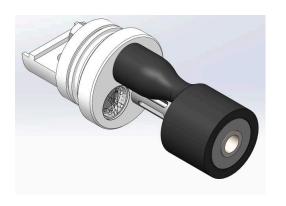
#### **RSKsmooth**

```
rsk = RSKsmooth(rsk,'temperature','windowLength',5,
'filter','boxcar','profile',1,'direction','down');
```

- Low-pass filter data with a running average or median
- Boxcar or triangular weighting windows
- User specified window length, profile number and cast direction







# **RSKalignchannel**

rsk = RSKalignchannel(rsk, 'channel','temperature','lag',2);

- Shifts a channel in time
- Can specify lag as a number of samples or a time in seconds (requires interpolation)



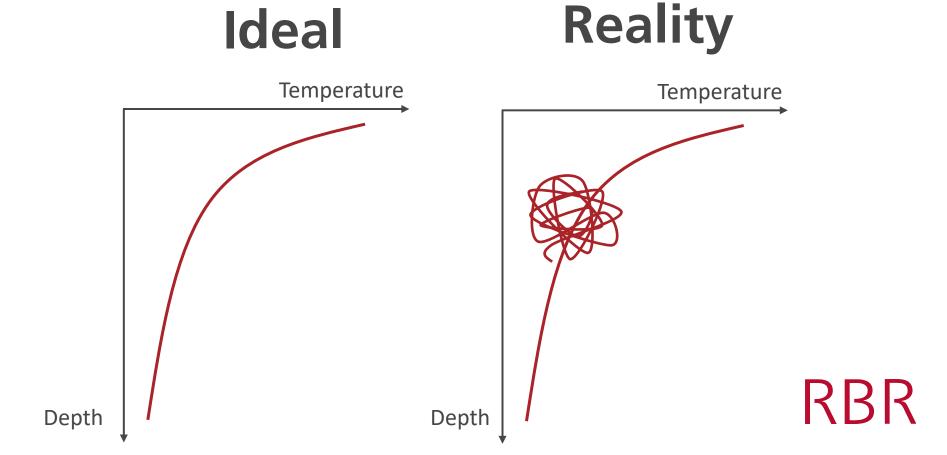
# Time misalignment of conductivity and temperature



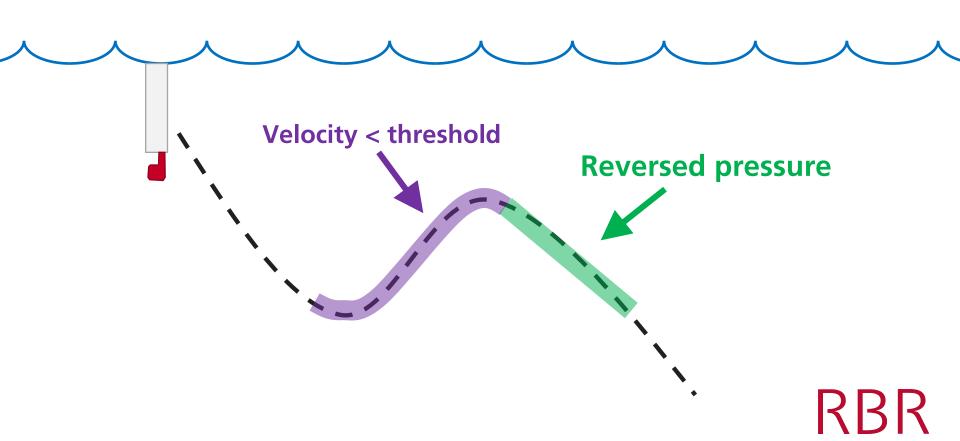
- In some instruments, conductivity and temperature are separated vertically in space
- Sensors may have different time constants
- → Both factors cause errors in derived salinity (e.g., spikes)
- For details on dynamic corrections for RBR CTDs, please see: <u>Webinar recording</u> and <u>PDF slides</u>





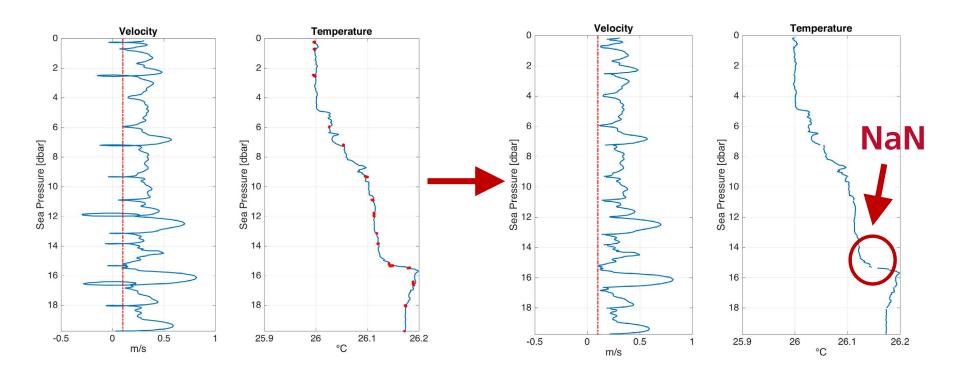

# What is the optimal lag? Try RSKcalculateCTlag

```
lag = RSKcalculateCTlag(rsk);
```


- Derive salinity with a range of lags, from -20 to 20 samples
- High-pass filter salinity, and calculate the standard deviation of the result
- optimal lag is the one with the smallest standard deviation (i.e., the least "spiky")



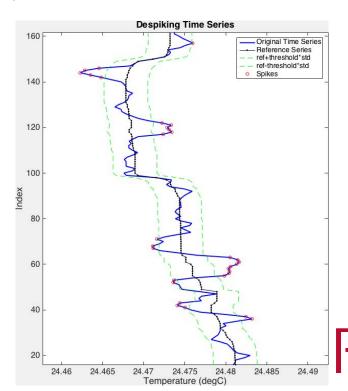
#### RSKremoveloops – improve data affected by ship heave




# **RSKremoveloops**



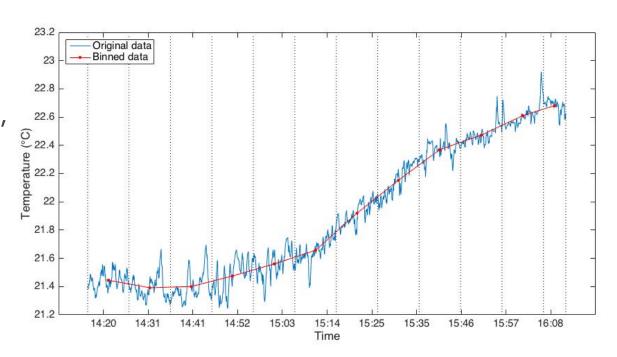
# **RSKremoveloops**


rsk = RSKremoveloops(rsk,'threshold',0.1);



# **RSKdespike**

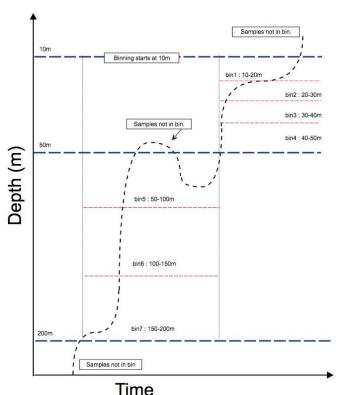
```
rsk = RSKdespike(rsk,'temperature','threshold',4,
'windowLength',11,'action','nan');
```


- Low-pass filter data to calculate a reference time series and standard deviation of the residuals.
- Data lying outside of 'threshold' times of standard deviations are defined as spikes.
- Three methods to deal with spikes
  - NaN
  - replace
  - interp



# **RSKbinaverage**

rsk = RSKbinaverage(rsk, 'binBy', 'time', 'binSize', 600);

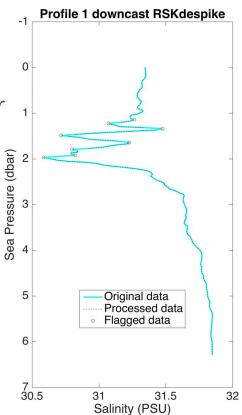

- Bin average data within an interval
- Bin by sea pressure, depth, or time



# **RSKbinaverage**

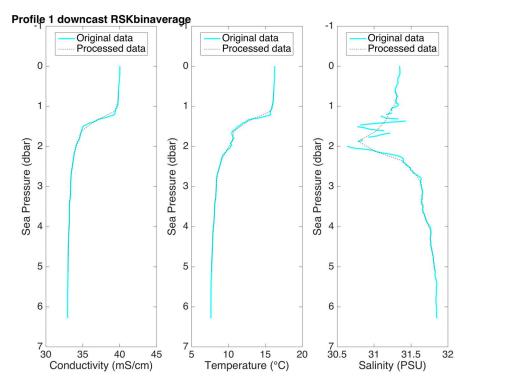
```
rsk = RSKbinaverage(rsk, 'direction', 'down', 'binBy', 'depth',
'binSize', 1, 'boundary', 1);
```

- RSKbinaverage supports regime binning (variable bin widths)
- Bin average according to pressure, depth, time, or any channel




# Visualization mode for post-process functions

```
rsk = RSKdespike(rsk,'salinity',
'threshold',1,(visualize',1);
```


- Optional input 'visualize' paired with profile number
- Display original, processed and flagged data.

Profile number to visualize



# Visualization mode for post-process functions

```
rsk = RSKbinaverage(rsk, 'binBy', 'sea pressure',
'direction', 'down', 'visualize', 1);
```





## **RSKderive**

- sea pressure
- profiling velocity
- Sound speed
- Specific conductivity
- O2 concentration
- O2 saturation

#### TEOS-10 wrappers:

- depth
- Practical and Absolute Salinity
- Potential temperature and density
- buoyancy frequency

rsk = RSKderiveseapressure(rsk);
rsk = RSKderivesalinity(rsk);

| rsk.ch | rsk.channels<br>nannels | ×              |             |
|--------|-------------------------|----------------|-------------|
| Fields | abc shortName           | longName       | abc units   |
| 1      | 'cond05'                | 'Conductivity' | 'mS/cm'     |
| 2      | 'temp03'                | 'Temperature'  | '°C'        |
| 3      | 'pres07'                | 'Pressure'     | 'dbar'      |
| 4      | 'doxy06'                | 'Dissolved O2' | '%'         |
| 5      | 'turb00'                | 'Turbidity'    | 'NTU'       |
| 6      | 'par_01'                | 'PAR'          | 'µMol/m²/s' |
| 7      | 'fluo01'                | 'Chlorophyll'  | 'µa/l'      |
| 8      | 'pres08'                | 'Sea Pressure' | 'dbar'      |
| 9      | 'sal_00'                | 'Salinity'     | 'PSU'       |

KKK

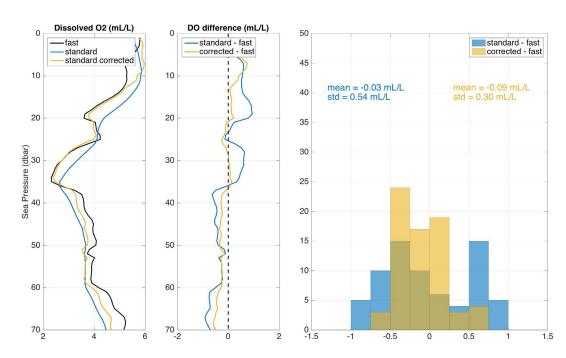


# Functions: Advanced post-processing

- > RSKcorrecttau
- > RSKcorrectTM



### **RSKcorrecttau**


- Apply Fozdar et al. (1985) algorithm to correct the phase and amplitude response of measured signals.
- Known as signal reconstruction or "sharpening"
- Suitable for sensors with a relatively large time constant
  - Profiling with a dissolved oxygen sensor with  $\tau$  = 8 s
  - And/or fast profiling through large gradients



## **RSKcorrecttau**

rsk = RSKcorrecttau(rsk, 'channel', 'Dissolved 02', 'tauResponse',8)

- Application on RBRcodaT.ODO ( $\tau = 8s$ ) in a profiling practice
- T.ODO|fast ( $\tau$  = 1s) serve as a reference



## **RSKcorrectTM**

```
rsk = RSKcorrecttau(rsk, 'alpha', 0.08, 'beta', 1/8);
```

 Applies the Lueck and Picklo (1990) algorithm to correct measured conductivity for thermal inertia

$$C_T(n) = -bC_T(n-1) + \gamma a[T(n) - T(n-1)]$$

$$a = 4f_N \alpha \beta^{-1} (1 + 4f_N \beta^{-1})^{-1}$$

$$b = 1 - 2a\alpha^{-1}$$

$$C_{cor}(n) = C(n) + C_T(n)$$

Lueck, R. G. and J. J. Picklo, 1990: Thermal inertia of conductivity cells: Observations with a Sea-Bird cell. J. Atmos. Oceanic Technol., 7, pp. 756 - 768. https://doi.org/10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2



- **≻**Read
- **≻View**
- **Process**
- >**Export**



## RSK2CSV

RSK2CSV(rsk, 'channel', { 'conductivity', 'pressure', 'dissolved O2'}, 'outputdir', '/Users/folder', 'comment', 'Hey Jude');

```
080217_20150919_1417_profile0003.csv - Edited >
//Creator: RBR Ltd
//Create Time: 05-Sep-2018 14:11:33
//Instrument model firmware and serialID: RBRmaestro 12.03 80217
//Sample period: 0.167 second
//Processing history:
///Users/RZhang/code/rsk files/080217 20150919 1417.rsk opened using RSKtools v2.3.1.
//Sea pressure calculated using an atmospheric pressure of 10.1325 dbar.
//Cruise:
//Station:
//Latitude:
//Longitude:
//Depth:
//Date:
//Weather:
//Crew:
//Comment: Hey Jude
                                                           Pressure(dbar),
//Time(yyyy-mm-dd HH:MM:ss.FFF),
                                   Conductivity(mS/cm),
                                                                              Dissolved 02(%).
                                                                                                    Cast direction
2015-09-19 08:59:05.000.
                                     34,2349.
                                                          79,0907.
                                                                              472,6810.
2015-09-19 08:59:05.167.
                                     34.2363.
                                                          78.8998.
                                                                              472.5748.
2015-09-19 08:59:05.333.
                                     34.2414.
                                                          78.7738.
                                                                              472.5124.
2015-09-19 08:59:05.500,
                                     34.2504.
                                                          78.6109,
                                                                              472.4069,
2015-09-19 08:59:05.667,
                                     34.2559,
                                                          78.4469,
                                                                              472.3188,
2015-09-19 08:59:05.833.
                                     34.2618.
                                                          78,2888.
                                                                              472.1892.
2015-09-19 08:59:06.000.
                                     34.2679.
                                                          78.1382.
                                                                              472,1196.
```



## **RSK2ODV**

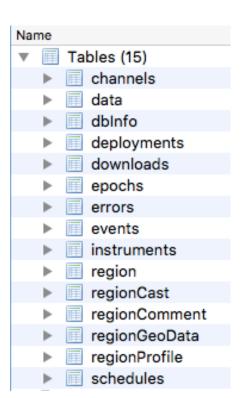
#### RSK2ODV(rsk)

//<Software>RSKtools</Software>

//<Source></Source>

//<CreateTime>09-Sep-2018 13:04:12</CreateTime>

```
//<SourceLast-Modified></SourceLast-Modified>
//<Version>ODV Spreadsheet V4.0</Version>
//<DataField>Ocean</DataField>
//<DataType>Profile</DataType>
//<DataVariable>label="Cast direction" value type="TEXT" is primary variable="F" comment="d-downcast u-upcast"</DataVariable>
//<MissingDataValues>NaN</MissingDataValues>
// Model=RBRconcerto
// Firmware=12.02
// Serial=65679
//Processing history:
///Users/RZhang/code/rsk files/065679 20160517 1657.rsk opened using RSKtools v2.3.1.
//Sea pressure calculated using an atmospheric pressure of 10.1325 dbar.
Cruise
           Station
                      Type yyyy-mm-ddTHH:MM:ss.FFF
                                                       Longitude[degrees_east]
                                                                                   Latitude [degrees_north]
                                                                                                               Bot. Depth [m]
Sea_Pressure[dbar]
                      Conductivity[mS/cm]
                                            Temperature[∞C] Pressure[dbar] Dissolved_02[%] Chlorophyll_a[µg/l]
                                                                                                                    Cast_direction
     S1
          C
                2016-05-17T07:51:21.000
                                            0.00 0.00 0.0
                                                             357.6316
                                                                        33,9095
                                                                                   9.1915
                                                                                              367.7641
                                                                                                         97.9795
                                                                                                                    0.7727
     S1
                2016-05-17T07:51:21,167
                                            0.00 0.00 0.0
                                                             357.4582
                                                                        33,9090
                                                                                   9.1916
                                                                                              367.5907
                                                                                                         98.0505
                                                                                                                    0.7727
C1
                                                                                                                               ш
C1
     S1
                2016-05-17T07:51:21.333
                                            0.00 0.00 0.0
                                                             357,2824
                                                                        33,9089
                                                                                   9.1917
                                                                                              367.4149
                                                                                                         97.9677
                                                                                                                    0.7725
                                                                                                                               ш
                                            0.00 0.00 0.0
                                                             357.0989
C1
     S1
                2016-05-17T07:51:21.500
                                                                        33,9091
                                                                                   9.1919
                                                                                              367.2314
                                                                                                         97,9490
                                                                                                                    0.7726
                                                                                                                               u
C1
     S1
                2016-05-17T07:51:21.667
                                            0.00 0.00 0.0
                                                             356.9295
                                                                        33,9088
                                                                                   9.1917
                                                                                              367.0620
                                                                                                         98,0126
                                                                                                                    0.7733
                                                                                                                               u
     S1
                                            0.00 0.00 0.0
                                                             356.7532
                                                                        33.9088
                                                                                   9.1914
                                                                                              366.8857
                                                                                                         97,9854
                                                                                                                    0.7754
C1
                2016-05-17T07:51:21.833
                                                                                                                               u
                                                            356.5741
     S1
C1
                2016-05-17T07:51:22.000
                                            0.00 0.00 0.0
                                                                        33,9086
                                                                                   9.1915
                                                                                              366.7066
                                                                                                         97.9857
                                                                                                                    0.7771
                                                                                                                               u
C1
     S1
                2016-05-17T07:51:22.167
                                            0.00 0.00 0.0
                                                            356.3943
                                                                        33.9071
                                                                                   9.1915
                                                                                              366.5268
                                                                                                         97.9761
                                                                                                                    0.7785
                                                                                                                               u
                2016-05-17T07:51:22.333
C1
     S1
                                            0.00 0.00 0.0
                                                             356,2234
                                                                        33,9075
                                                                                   9.1913
                                                                                              366.3559
                                                                                                         97,9596
                                                                                                                    0.7810
                                                                                                                               u
C1
     S1
                2016-05-17T07:51:22.500
                                            0.00 0.00 0.0
                                                            356.0466
                                                                        33,9076
                                                                                   9.1913
                                                                                              366.1791
                                                                                                         97,9900
                                                                                                                    0.7784
                                                                                                                               u
C1
     S1
                2016-05-17T07:51:22.667
                                            0.00 0.00 0.0
                                                             355.8685
                                                                        33,9079
                                                                                   9.1914
                                                                                              366,0010
                                                                                                         97.9771
                                                                                                                    0.7751
                                                                                                                                u
C1
     S1
                2016-05-17T07:51:22.833
                                                             355,6923
                                                                        33,9075
                                                                                   9.1915
                                                                                              365.8248
                                                                                                         97.9838
                                                                                                                    0.7728
                                            0.00 0.00 0.0
                                                                                                                               u
     S1
           C
                2016-05-17T07:51:23.000
                                            0.00 0.00 0.0
                                                             355.5148
                                                                        33.9076
                                                                                   9.1912
                                                                                              365.6473
                                                                                                         98.0044
                                                                                                                    0.7718
                                                                                                                               u
```


065679\_20160517\_1657\_profile0002.txt — Edited ~

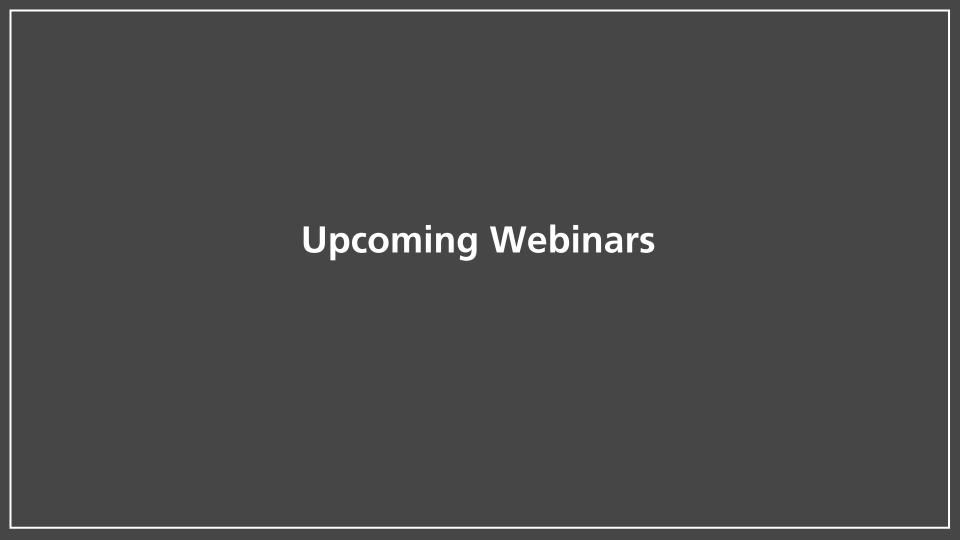


## RSK2RSK

```
newfile = RSK2RSK(rsk)
```

- Write rsk file using simplest schema
- Write post-processed RBR data in an RSK file
- Readable with Ruskin
- Independent from original RSK file






## RSKcreate – convert ANY data into the rsk structure

- Any data source: other CTDs, float, gilder, etc
- Legacy RBR instruments
- Apply RSKtools function to any dataset!

```
tstamp = [735722.625196759;
          735722.625198692;
          735722.6252006131;
values = [39.9973, 16.2695, 10.1034;
           39.9873, 16.2648, 10.1266;
           39.9887, 16.2553, 10.1247];
channel = {'Conductivity', 'Temperature', 'Pressure'};
unit = {'mS/cm','°C','dbar'};
rsk = RSKcreate('tstamp', tstamp, 'values', values,
'channel', channel, 'unit', unit);
```





## **Future Webinars**



CTD and sensor calibrations

Greg Johnson June 10, 2020 at 12PM EDT

Learn about the RBR calibration procedure for conductivity, temperature, pressures, and other sensors, and how you can maintain, verify, and calibrate some sensors in the field.



Wave measurements for ocean, coastal, and transient wave studies

Eric Siegel (RBR) & Curt Storlazzi (USGS)
June 17, 2020 at 12PM EDT

Expand your understanding of wave measurements, learn how to optimize your deployment settings, and review Ruskin wave processing methods

Register for the Webinar

Register for the Webinar





# **Thank You**

**Contact Us** 

RBR
rbr-global.com
info@rbr-global.com
+1 613 599 8900

