

Table of contents

1 Introduction ...8
1.1 Command processing and timeouts...8

1.1.1 Timeouts, output blanking, and power saving ..8
1.1.1.1 Wakeup ...8
1.1.1.2 Output blanking..9
1.1.1.3 Power saving...9

1.1.2 Parameter modification ..9
1.1.3 Parameter naming constraints ...10
1.1.4 Command entry ...10

1.1.4.1 Start and end of a command ...10
1.1.4.2 Case sensitivity ...11
1.1.4.3 Grammar ...11
1.1.4.4 Common error messages ...11

1.1.5 Parsing logger responses ..12
1.1.5.1 Responses to commands ...12
1.1.5.2 Parsing streamed or polled samples ...13
1.1.5.3 Parsing numbers...13

1.2 Formatting..14

1.3 Security...14

2 Quick start.. 15
2.1 General overview ...15

2.1.1 Acquiring samples..15
2.1.2 Channels...15
2.1.3 Groups ..16
2.1.4 Schedules ...16
2.1.5 Configurations ...17
2.1.6 Datasets..17

2.2 Enabling continuous sampling ...18

2.3 Serial streaming from serial port ..19
2.3.1 Setting the correct baud rate ..19
2.3.2 Enabling the serial streaming ...19

RBR#0014818revB
2

2.4 Integrating with a profiling float ...20
2.4.1 Introduction ...20
2.4.2 Buoyancy control...21
2.4.3 Regime sampling mode...21
2.4.4 Single schedule, single configuration RBRargo C.T.D example...........................22

2.4.4.1 Beginning of mission, initial configuration ...22
2.4.4.2 Start of ascent...23
2.4.4.3 End of ascent, disable logging and download data..23

2.4.5 RBRargo BGC with multiple schedules and different configurations24
2.4.5.1 Beginning of the mission, initial configuration...25
2.4.5.2 Ascent mode ...28
2.4.5.3 End of ascent ..28

2.4.6 RBRargo introspection ..29
2.4.7 Providing platform details to end-users...30
2.4.8 Sensor drift monitoring at the surface..30
2.4.9 Energy tracking ..31

2.5 Tips for system integrators..31
2.5.1 Deployment start time...31
2.5.2 Sampling rates ...31

2.5.2.1 Converting from Hz to milliseconds ..31
2.5.2.2 Converting from milliseconds to Hz ..31
2.5.2.3 Examples...31

2.5.3 Future proofing development...32
2.5.4 Power management and power cycling behaviour ...32
2.5.5 Error handling ..33

2.5.5.1 Instrument not responding..33
2.5.5.2 Instrument reporting a hardware failure ..33
2.5.5.3 Instrument reporting error codes in the measurements..................................33

2.5.6 Electronic static discharge ..33
2.6 Migrate from Gen3 to Gen4 platforms ..33

2.6.1 Introduction ...33
2.6.2 Identifying a Gen4 platform ..33
2.6.3 Removed commands...34
2.6.4 Improved commands and new parameters ...35
2.6.5 New commands ...35

2.7 Download stored data ...35

RBR#0014818revB
3

3 Commands.. 37
3.1 Communications..37

3.1.1 link ..37
3.1.1.1 serial ..37

3.1.2 sleep ...39
3.2 Realtime data ...40

3.2.1 poll ..40
3.3 Instrument details..42

3.3.1 id ...42
3.3.2 id4 ...43
3.3.3 instrument..44

3.3.3.1 dump ...46
3.3.3.2 outputformat ..47
3.3.3.3 power ..49
3.3.3.4 reboot..52

3.3.4 pcba ..53
3.4 Deployments ..54

3.4.1 clock ...54
3.4.2 verify ...55
3.4.3 enable...57
3.4.4 disable ..58
3.4.5 deployment ..59
3.4.6 pause ..60
3.4.7 resume..61
3.4.8 simulation ..62

3.5 Memory and datasets ..63
3.5.1 dataset..64

3.5.1.1 delete ..66
3.5.2 download ...66
3.5.3 storage..69

3.6 Configuration information and calibration ..69
3.6.1 channel...69
3.6.2 calibration ..71
3.6.3 sensor ...73
3.6.4 group ..74

3.6.4.1 create ..75

RBR#0014818revB
4

3.6.4.2 delete ..76
3.6.5 schedule ...77

3.6.5.1 create ..81
3.6.5.2 delete ..82

3.6.6 config ..83
3.6.6.1 create ..84
3.6.6.2 delete ..85

3.6.7 settings ...86
3.6.8 parameters...86

4 Format of stored data .. 89
4.1 Overview...89

4.1.1 Sample data ...89
4.1.2 Events ...89
4.1.3 Metadata ..89
4.1.4 Related commands..90

4.2 Sample data storage format ...90
4.2.1 Options ...90
4.2.2 Layout...90
4.2.3 Related commands..91
4.2.4 Errors ..91

4.3 Metadata layout ...93
4.3.1 TAG ...95
4.3.2 Metadata ..95
4.3.3 Logger...96
4.3.4 Settings...97

4.3.4.1 Feature flag bit assignments..98
4.3.4.2 Serial mode definitions ..98

4.3.5 Deployment..99
4.3.5.1 Memory format codes ..100
4.3.5.2 Outputformat bit flags ...101
4.3.5.3 Internal battery codes ..101
4.3.5.4 External battery codes ...102

4.3.6 Configuration ...102
4.3.7 Schedules ...103

4.3.7.1 Schedule map ...103
4.3.7.2 Schedule details ...104

RBR#0014818revB
5

4.3.7.3 Sampling mode codes..105
4.3.7.4 Sampling mode parameters ..106

4.3.8 User groups ..108
4.3.8.1 User group map ..108
4.3.8.2 User group details ..109

4.3.9 Module group ...110
4.3.9.1 Module group map ...110
4.3.9.2 Module group details..110

4.3.10 Channels...111
4.3.10.1 Channel map...111
4.3.10.2 Channel details ...112

4.4 Event data storage format...118
4.4.1 Layout...118
4.4.2 Event types and auxiliary data ..119

5 Channel labels... 122
6 Calibration equations and cross-channel dependencies................................ 125
6.1 lin - linear equation..125

6.2 cub - cubic equation ..125

6.3 qad - quadratic equation...125

6.4 tmp - temperature ...125

6.5 corr_pres2 - pressure with temperature correction ..126

6.6 corr_cond3 - conductivity with pressure and temperature correction127

6.7 deri_seapres - derivation of sea pressure from absolute pressure128

6.8 deri_depth - derivation of depth from absolute pressure ...128

6.9 pss78 - derivation of practical salinity ..129
6.9.1 Practical salinity of seawater ..130

6.10 deri_dyncorrT and deri_dyncorrS - derivation of practical salinity with dynamic
correction ...132

6.10.1 deri_dyncorrT equation ..132
6.10.2 deri_dyncorrS equation...133

6.11 corr_o2conc_garcia - O2 concentration compensated for salinity and pressure135

6.12 deri_o2sat_garcia - derivation of O2 saturation from concentration136

6.13 deri_sos - derivation of speed of sound..137

6.14 deri_speccond - derivation of specific conductivity ..138

RBR#0014818revB
6

7 Information, warning, and error codes.. 139
7.1 List of error and warning messages ..139

7.1.1 Warning ..139
7.1.2 Error..139

8 Revision history .. 143
9 Appendix .. 144
9.1 Critical parameter keywords which cannot be used as a label144

RBR#0014818revB
7

1 Introduction

This document describes the Generation4 API (also referred to as Gen4 API). RBR instruments supporting the Gen4 API
can be identified using the id or instrument command. Instruments supporting the Gen4 API include compact
instruments (SL4), standalone sensors (SEN4), standard instruments (L4), and many OEM instruments.

1.1 Command processing and timeouts
Commands may be sent to the logger via either the USB-CDC port or a true serial port (RS-232 or RS-485). With a few
exceptions and minor differences, both ports are intended to offer the same functionality, but can not be used for
command input simultaneously. If this is attempted, then either one of the ports will not respond, or there will be a
'busy' message:

<< ERR-101 command parser busy

1.1.1 Timeouts, output blanking, and power saving
1.1.1.1 Wakeup
All RBR instruments sleep as much as possible. Interaction requires that the instrument be woken up first, then a series
of commands issued. After a 10-second idle timer elapses, the instrument will return to the low-power sleep mode.

The wakeup procedure is to send a single character; carriage return <CR> (0x0D) is the recommended choice. Over the
USB link, the response is usually immediate. Over the Serial link, this first character may not be completely received by
the instrument due to the non-zero wakeup time required, and it may be seen as a garbage character. However, the
instrument itself ignores all garbage characters received immediately after wakeup, and so will not return any errors.

After the initial <CR> character, a 10ms pause should be used. Following this, the instrument is fully ready to receive
any valid command.

In the RBR Ruskin software which is used by end-customers, the following is an example of the wakeup sequence used:

>> <CR>
% Nothing will be returned by this character, but the logger will start to wake up.
% [10ms pause]
% The logger completes its wake-up procedure.
>> id<CR>
% The id command is a useful initial command as it replies with confirmation of the
instrument connection.
<< id model=RBRduo3 fwversion=1.000 sn=050050 fwtype=104
% This is the reply from the instrument.
<< Ready:
% This is the "Ready" prompt, which may or may not be included, depending on the state
of the prompt command.

RBR#0014818revB 8

1.1.1.2 Output blanking
When the first character of a potential command is received, a 10-second timeout is started. This timeout serves two
purposes: output blanking and power saving.

As soon as the logger knows it may be about to receive a command, any output which it could autonomously generate
(such as streamed sample data) is suppressed. This is to avoid confusing the host, which has just sent a command and
may be expecting a particular form of response. Until the logger has processed the command and sent the response,
any other outputs will be suppressed. Output such as streamed data may appear in between received commands, but
not while a command is being received or processed.

This 'output-blanking' state does not persist forever; if the 10-second timeout expires before a command terminator is
seen, outputs such as streamed data are permitted again. This poses no problem for machine generated commands,
but can be limiting for commands typed manually at a terminal.

The output blanking behaviour does not apply to the very first (potential) command received after the logger is woken
from a quiescent state. For this command, outputs such as streamed data may continue to appear while the command
is being received. This exception prevents, for example, random noise input from suppressing required data output. The
logger will not invoke the output blanking behaviour until it has seen at least one valid command, at which point it can
reasonably assume that a valid host is genuinely trying to communicate with it. Empty commands (isolated <CR> and/
or <LF>) do not count as "valid commands" for this purpose.

1.1.1.3 Power saving
The second purpose of the 10-second timeout is to minimize power consumption. If no valid, terminated command is
received within the timeout, the communication returns to a quiescent state. This means that it discards any
incomplete input, restarts the "valid command" timeout, and will start afresh with the next input character.

In the case of the serial port, it also allows the transmit hardware to be turned off to save power; indeed, if the logger
has no other tasks to perform the entire instrument will enter a low power sleep mode.

The USB port is different in this respect, because the logger can draw enough power from the connection to run most of
its basic functions. As long as the USB is connected the logger remains 'awake' and responsive to commands; no
hardware is shut down. However, expiry of the 10-second timeout still resets the command processor's behaviour with
respect to its 'memory' of valid commands, incomplete input and output blanking.

1.1.2 Parameter modification
All updated parameters are held temporarily in a RAM buffer, and read back from there if interrogated. The data is
permanently stored under the following conditions:

1. timeout protection, 10 seconds after the last parameter modification.
2. successfully enabling the logger to sample.
3. executing the sleep command.

If none of these conditions are met (removal of power before timeout, for instance), parameter values may not be those
expected. This could apply if, for example, a logger is programmed via USB, without internal batteries installed and
relying on the USB for power. If the USB link is unplugged before the logger has a chance to save any changes made,
they will be lost.

Data which would have been streamed but has been suppressed, due to output blanking, are dropped and so
will never be streamed.

RBR#0014818revB 9

1.1.3 Parameter naming constraints
When specifying labels for datasets, configurations, schedules or groups, there are a few constraints which must be
respected:

 Maximum length of 31 characters.
 Must not start with a full stop/period character (.).
 Must not match any command name, critical parameter keywords, or existing labels; in this context a match

is not case sensitive. A complete list of reserved words can be found in the appendix.
 Labels are case sensitive; 'a' is not the same as 'A'.
 It is good practice to use only alphabetic characters, numeric digits, and the underscore '_' character. This will

avoid problems in future if any other punctuation character is assigned a special purpose.

Special characters which can not be used:

Extended ASCII characters (code
128+)

' ' (space)

'!' (exclamation mark)

'“' (double quote)

'#' (number sign)

'$' (dollar)

'&' (ampersand)

''' (single quote)

‘()' (parentheses)

'*' (asterisk)

',' (comma)

'/' (forward slash)

';' (semicolon)

'<' (less than)

'='(equals)

'>' (greater than)

'?' (question mark)

'@' (at sign)

'[]' (square brackets)

'\' (backslash)

'^' (caret)

'`' (grave)

'{}' (curly brackets)

'|' (pipe)

'~' (tilde)

'%' (percent)

1.1.4 Command entry
1.1.4.1 Start and end of a command
A potential command is considered to begin when its first character is received. For the serial port this is
straightforward; for the USB it is hard or impossible for the CPU to 'see' how the messages are packaged, but the overall
effect is similar. In both cases the potential command has been received once the logger sees a termination character;
either one of <CR> (0x0D) or <LF> (0x0A). Combinations of the two characters are dealt with as follows:

>> <CR><LF>
<< ready:

>> <LF><CR>
<< ready:

>> <CR><CR>
<< ready: ready:

>> <LF><LF>
<< ready: ready:

RBR#0014818revB 10

https://docs-rbr.atlassian.net/wiki/pages/resumedraft.action?atlOrigin=eyJpIjoiMzU2N2ZjNTE5MTk0NDc2NDllYzdiOGVhNGMzOTE5NjAiLCJwIjoiYyJ9&draftId=476479625&draftShareId=cecdaea9-5a76-4ef3-af13-420fba48dff3

In the first two cases, the second character is considered redundant and is discarded; only one ready: prompt is sent.
 For the last two cases, the second character is treated as a second empty command, so it also provokes the logger's
prompt, and a total of two prompts are sent (see also the settings prompt command).

1.1.4.2 Case sensitivity
In general, the logger is not sensitive to the case of the input; for example, ID, Id, iD, and id are all acceptable forms for
the id command. Any exceptions to this rule are highlighted when necessary. However, when handling logger
responses, do not assume that the case of the output will match the case of the input: see also Parsing logger
responses.

1.1.4.3 Grammar

1.1.4.4 Common error messages
The received message may or may not form a valid command; errors detectable by the logger will vary from one
command to another, but some of the common, general errors include:

 ERR-102 invalid command '<unknown_text>'
 ERR-107 expected argument missing
 ERR-108 invalid argument to command: '<unknown_text>'
 See Information, warning, and error codes for a complete list.

RBR#0014818revB 11

1.1.5 Parsing logger responses
1.1.5.1 Responses to commands
Responses to commands follow the grammar described below.

There are some important points to consider when implementing robust automated parsing of responses to logger
commands:

 Do not assume the upper-case/lower-case nature of the responses will match those in the command. For
example,

>> STORAGE USED
<< storage used=0

It is good practice to make parsing insensitive to the case of the responses.
 Do not assume that parameters will be reported in the same order they were requested. For example,

>> storage size used remaining
<< storage used=0 remaining=132120576 size=132120576

It is good practice to check each <key>=<value> pair for the <key> of interest until all searches are satisfied.
 Be aware that future versions of the instrument firmware may report parameters that are undocumented in this

version of the Gen4 command reference. The reporting order is also subject to change from one firmware
version to another. For example,

>> storage
<< storage used=0 remaining=132120576 size=132120576

is the current behaviour, but a future version might respond as follows:

RBR#0014818revB 12

>> storage
<< storage used=0 remaining=132120576 futureparameter=132120576 size=132120576

Again, it is good practice to check all <key>=<value> pairs and be prepared to ignore <key>s which are not
recognized.

1.1.5.2 Parsing streamed or polled samples
Streamed or polled samples follow the grammar described below.

There are some important points to consider when implementing robust parsing of streamed or polled samples:

 When parsing streamed output or polled values, it is good practice to assume that any channel could report an
error code (see outputformat and poll commands). If a channel reports an error code, other channels might still
be valid.

 When handling realtime data, depending on group and schedule composition, relatively large amounts of data
can be produced since channels will be repeated for every group membership.
An estimate of the maximum expected size can be calculated by the formula: bytes = 70 + 24 x number of
channels in the schedule.

So, if an instrument has “channel1”, “channel2”, “channel3”, “channel4”; with groups: “group1 = channel2|
channel1”, “group2 = “channel1|channel2|channel4”; and schedule: “schedule1 = group1|group2”, which gives
five channels in the schedule; the output for realtime would be akin to:

<< RBR 123456 schedule1 2025-01-01 00:00:00:00 channel2_value channel1_value
channel1_value channel2_value channel4_value CRC

1.1.5.3 Parsing numbers
 Do not assume that numeric fields will always have the same number of digits. Even parameters whose values

might be expected to remain fixed can change if the logger is used in a different configuration. For example, an
instrument with an auto-ranging channel might behave as follows:

RBR#0014818revB 13

>> channel turbidity_00 gain
<< channel turbidity_00 gain=auto

>> channel turbidity_00 gain=20
<< channel turbidity_00 gain=20.0

This is true even when parsing data values with a well-specified format. For example, even though reporting of
values may be specified to contain four decimal places (eg. 21.7325), parsing this number without assuming
anything about the number of digits is a more robust approach.

 When parsing numbers of any sort, use the most inclusive format which is practical. In principle, parsing
everything as a double-precision floating point number would almost always work (one exception being the 64-
bit integers used for timestamps, see Sample data storage format). Recognizing that such an approach is
overkill, and may add unacceptable overhead in some applications, parsing all integers as signed 32-bit
quantities and all floating point values as single precision (IEEE-754 32-bit) numbers would be satisfactory. It
may be assumed that numbers are integers unless the documentation or examples make it clear that they are
floating-point values.

1.2 Formatting
 Examples of literal input to and output from the instrument are shown in bold type.
 In examples of dialogue between the instrument and a host, input to the instrument is preceded by >>, while

output from the instrument is preceded by <<. These characters must not actually be included in commands or
expected in responses.

 Some examples of command dialogues contain descriptive comments which are not part of the command or
response. These start with a percent character, %.

 When an item or group of items is optional, it is enclosed in [square brackets].
 Where an item can be only one of several options, options are separated by vertical | bars.
 Place holders for variable fields are in <italics enclosed in angle brackets>.
 Lists are used for unknown or variable numbers of items, or to abbreviate large numbers of options, and are

specified by giving a first example of an item, followed by a comma and ellipsis, such as <example-value>, … .

1.3 Security
Access to some instrument commands is restricted or controlled in certain situations. These controls are referred to as
Security settings, and there are currently two:

 Open commands can be executed without restriction.
 Unsafe commands are those which the logger will not execute if logging is in progress. For example, a sampling

period cannot be changed in the middle of a deployment. Reading parameters is always available.

Some commands accept and respond with date/times which look like very large integers, but which have an
implicit special format. For example, 20170401120000 represents noon on 1st April 2017. These cases are
usually clear from the context.

Some commands may allow interrogation while the instrument is enabled (open) but modification must be
done when the instrument is disabled (unsafe).

RBR#0014818revB 14

2 Quick start

This section details commands sent to (>>) and responses received from (<<) the instrument in order to perform a
desired action. These do not cover an exhaustive list of possibilities but are intended to be a starting point from which
to start interacting with the instrument.

The prompt state has been disabled (settings prompt=off) for all of these examples. If it was enabled you should
expect a Ready: prompt following all of the instrument's responses.

2.1 General overview

2.1.1 Acquiring samples
There are basically two fundamental ways to acquire samples: they can be acquired by polling or according to a defined
sampling schedule.

A polled measurement is performed simply via the poll command. A sample acquired only for polling purposes is not
stored in the logger's memory.

Scheduled samples are configured using various commands. Scheduled samples may be stored in the logger's
memory, and they can also be streamed directly out of the logger in real-time; see the stream and storage parameters
of the schedule command. Gen-4 instruments have the ability to sample with different measurement parameters
according to different schedules, and for this, we need to understand the concepts of channels, groups, schedules and
configurations. These will be described briefly in the sections below, but briefly:

 Channels can be arranged in groups.
 Each group may be associated with one or more schedules.
 Each schedule can have its own sampling mode and parameters, independent of other schedules.
 A sampling mode can be as simple as a single fixed sampling rate, or as complex as a multi-rate scheme driven

by the logger's depth in the water.
 One or more schedules are collected together into a configuration.
 The logger is enabled using one of these configurations, and it will execute the associated schedule(s) to acquire

data.

Gen-4 instruments are also designed to support retention of data in the memory from more than one deployment; it will
no longer be necessary to delete the previous deployment's data before starting a new one.

A major feature of RBR instruments is that polled and scheduled samples can occur at the same time, they are not
mutually exclusive.

The acquisition of data can be constrained or controlled in other ways, by configuring a gating condition such as time
and twist activation. If available, these features apply to the entire instrument, not on a per-schedule basis.

Refer to the remaining Quick start sections for examples of different sequences of commands used to set up different
ways to acquire samples.

2.1.2 Channels
Channels are the basic elements of what will become a set of data acquired by the instrument. As with previous
generations of RBR instruments, Gen-4 products can measure a wide range of physical properties of the water, such as
temperature, pressure, conductivity, turbidity, dissolved oxygen, chlorophyll, and so on. This list is not exhaustive and
the number of sensors supported continues to increase regularly. For each one of these physical properties measured -
for example pressure - the instrument has exactly one channel. Instrument channels may also be available for physical
properties that are not measured directly, but that are derived by calculation from measured channels - for example
salinity, which is derived from conductivity, temperature and pressure. In summary:

RBR#0014818revB 15

 A channel represents a single parameter of interest recorded by the logger. The parameter may be directly
measured or derived by calculation from other parameters.

 Although channels themselves are not a new concept in RBR instruments, the way in which they are specified for
sampling is new for Gen-4.

 Users can not create or delete channels. Modification of channel details is limited to its calibration or other
specialised parameters (for example gain, if applicable).

 Channels are created and assigned a label at the factory when the logger is built.
 Any channel can be a member of more than one group.
 One configuration is selected when the logger is enabled; this specifies, via the list of schedules, which groups

will be sampled. Any channel not belonging to at least one of these groups will not be sampled during the
deployment.

When sending commands that access or modify information associated with a channel, the channel is referred to by its
label - for example, temperature_00 .

Associated command(s):

channel

calibration

sensor

2.1.3 Groups
 A group is a collection of one or more logger channels.
 In the context of sampling, a group (or a list of groups) determines which channels will be sampled according to

a given schedule.
 Channels can not be directly assigned to a schedule; this can only be done through a group. A group may

contain only one channel if necessary.
 The logger can maintain a pool of groups, any of which can be included in the group list of one or more

schedules.
 The user has complete control over the creation, content, and deletion of groups.
 When creating a group, the user assigns it a label; group labels must be unique.
 One configuration is selected when the logger is enabled; any group that is not associated with a schedule

included in that configuration will not be sampled as part of the deployment.

Associated command(s):

group

2.1.4 Schedules
 A schedule determines how a given subset of groups will be sampled during the deployment.
 Multiple schedules can be included in a configuration, enabling groups to be sampled in different ways.
 The logger can maintain a pool of schedules, any of which can be included in one or more configurations.
 The user has complete control over the creation, content, and deletion of schedules.
 Each schedule contains a list of channel groups, one sampling mode, and a set of sampling parameters

appropriate for the mode.
 When creating a schedule, the user assigns it a label; schedule labels must be unique.
 One configuration is selected when the logger is enabled; only the schedules included in that configuration will

be executed during the deployment.

Associated command(s):

schedule

RBR#0014818revB 16

2.1.5 Configurations
 A configuration is essentially a list of the sampling schedules to be executed by the logger when it is enabled.
 The logger can maintain a pool of configurations; when the logger is enabled, the user specifies exactly

one configuration that determines how the logger will behave during the deployment.
 The user has complete control over the creation, content, and deletion of configurations; if necessary, the logger

can always be restored to its as-shipped factory default configuration.
 When creating a configuration, the user assigns it a label; configuration labels must be unique.
 All elements of a configuration must be valid and consistent before it can be used to enable the logger.
 The selected configuration forms a subset of the metadata for the deployment, and a copy is stored in memory

when the logger is enabled.

Associated command(s):

config

2.1.6 Datasets
 A dataset is the collection of all sample data and all supporting auxiliary data relating to a single deployment of

the logger, stored in the logger's data memory.
 It comprises a number of storage objects; for convenience, these storage objects can be thought of as "files",

and will be referred to as such. However, they may not necessarily be implemented as actual files within the
memory.

 One file contains the deployment metadata; this is a snapshot of the logger's state and parameters at the time
the deployment was enabled.

 A second file contains all the events that occurred during the deployment. Essentially, an event is a record of
anything that occurs during the deployment that is not sample data.

 The remaining file(s) contain the sample data, one file for each schedule defined for the deployment.
 The user creates a dataset by enabling the logger using the enable command, assigning it a label and associating

it with a configuration.
 Only one dataset can be active (reflected by the status 'open', see dataset command). As the deployment

progresses, sample data and events accumulate within the active dataset.
 If logging is stopped (for any reason), the active dataset becomes one of a number of historical datasets retained

in memory, and will not be updated any further (reflected by the status 'closed', see dataset command).
 The user can delete any historical dataset to increase the amount of memory available for new ones.

Associated command(s):

dataset

enable

disable

download

RBR#0014818revB 17

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828276
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828276

2.2 Enabling continuous sampling
Start sampling immediately using the default configuration built into the instrument.

Assuming the default configuration is as:

>> group create gr_pts
<< group create gr_pts
>> group gr_pts channellist=pressure_00|salinity_00|temperature_00
<< group gr_pts channellist=pressure_00|salinity_00|temperature_00

>> schedule create sch_asc_pts
<< schedule create sch_asc_pts
>> schedule sch_asc_pts grouplist=gr_pts mode=continuous
<< schedule sch_asc_pts grouplist=gr_pts mode=continuous

>> schedule sch_asc_pts grouplist=gr_pts stream=off storage=on mode=continuous
period=1000 castdetection=off
<< schedule sch_asc_pts grouplist=gr_pts stream=off storage=on mode=continuous
period=1000 castdetection=off

>> config create default_config
<< config create default_config
>> config default_config schedulelist=sch_asc_pts
<< config default_config schedulelist=sch_asc_pts

Ensure no time gating on deployment:

>> deployment gate=none
<< deployment gate=none

Verify deployment:

>> verify config=default_config dataset=dataset_01
<< verify config=default_config dataset=dataset_01 storagemode=normal state=enabled

Enable deployment:

>> enable config=default_config dataset=dataset_01
<< enable config=default_config dataset=dataset_01 storagemode=normal state=enabled

Check current deployment status:

>> deployment status
<< deployment status=sampling

RBR#0014818revB 18

2.3 Serial streaming from serial port

2.3.1 Setting the correct baud rate
Here we set the baud rate to 115200 via the link serial command:

>> link serial baudrate
<< link serial baudrate=19200

>> link serial baudrate=115200
<< link serial baudrate=115200
% This response is sent at the old baudrate, 19200Bd.
% The host must now change its baudrate to 115200Bd.

2.3.2 Enabling the serial streaming
An instrument will start streaming measurements as soon as it is logging (see enable command) and serial streaming is
enabled (see schedule command). If the instrument memory is full, the instrument will continue streaming as long as
the instrument should be logging (see deployment command). The instrument outputformat command indicates
which channels will be reported and sets the type of output format to be used.

With an RBRconcerto³ C.T.D, assuming the configuration is set as:

>> group create gr_pts
<< group create gr_pts
>> group gr_pts channellist=pressure_00|temperature_00|salinity_00
<< group gr_pts channellist=pressure_00|temperature_00|salinity_00

>> schedule create sch_asc_pts
<< schedule create sch_asc_pts
>> schedule sch_asc_pts grouplist=gr_pts mode=continuous period=1000
<< schedule sch_asc_pts grouplist=gr_pts mode=continuous period=1000

>> config create default_config
<< config create default_config
>> config default_config schedulelist=sch_asc_pts
<< config default_config schedulelist=sch_asc_pts

Ensuring the schedule is streamed out with the right format:

>> schedule sch_asc_pts stream=serial
<< schedule sch_asc_pts stream=serial

Set output format:

>> instrument outputformat sn=on schedulelabel=on crc=on encoding=ascii
<< instrument outputformat sn=on schedulelabel=on crc=on encoding=ascii

RBR#0014818revB 19

Enabling the instrument:

>> enable config=default_config dataset=dataset_01
<< enable config=default_config dataset=dataset_01 storagemode=normal state=enabled

Instrument starts streaming measurements:

<< RBR 999999 sch_asc_pts 2024-01-01 00:10:14.000 10.0110e+000 21.3213e+000 0x94AB
<< RBR 999999 sch_asc_pts 2024-01-01 00:10:15.000 10.0241e+000 21.0201e+000 0x3A3A
<< RBR 999999 sch_asc_pts 2024-01-01 00:10:16.000 10.0248e+000 21.8246e+000 0x5967

2.4 Integrating with a profiling float

2.4.1 Introduction
There are a number of dedicated features in the RBRargo products aimed at profiling floats. The primary requirement of
these vehicles is to have multiple sampling regimes that are enabled according to depth.

The typical Argo profiler might be set up with the following behaviour.

RBR#0014818revB 20

2.4.2 Buoyancy control
When operated on a float, the RBR instrument is used mostly as a depth sensor, providing input to the buoyancy engine
and float controller. This is typically done interactively using the poll command, which can be performed at any time,
regardless of whether the RBR instrument logging schedule is enabled or not. The RBR will automatically fall asleep
after an idle timeout of a few seconds, but in order to minimize the power consumption, it is recommended that the
command poll channellist=pressure_00 is used. This will override the idle timeouts and does not affect any ongoing
deployment. It will also ensure, that the instrument is minimizing the power requirements by just powering and
sampling the pressure sensor.

Always ensure the instrument is awake before sending the poll command by following the recommended wake-up
procedure.

2.4.3 Regime sampling mode
The real science of the Argo profiler occurs during the upcast of the float, typically from 2000dbar to the surface. For
historical and scientific reasons, this is often a multi-stage ascent, where the sampling and binning requirements
change according to depth. The expanded figure below shows an example of a typical ascent setup for a 500dbar
profile.

As shown above, three distinct sampling regimes are required. Each has a boundary, a sampling speed, and an
averaging bin size.

 The boundary determines when the regime comes into effect (dbar).
 The sampling speed dictates the internal measurement rate (msec).
 The bin size dictates the amount of water column (in dbar) over which the samples will be averaged and stored.

The following chapters are various examples of how to operate the RBRargo.

Unlike other CTDs, RBR instruments can sample through surface waters without concerns. In fact, measuring
conductivity in the air can provide a reference drift measurement and a potentially useful barometric pressure
reading as well.

RBR#0014818revB 21

2.4.4 Single schedule, single configuration RBRargo C.T.D example
The following is a concrete example of how to operate an RBRargo C.T.D using the regime sampling mode and how to
enable/disable/download the data.

The RBRargo C.T.D is configured to collect measurements during the ascent phase:

 Salinity, temperature, and absolute pressure sampled
 0.1Hz binned 50dbar between 500dbar and 200dbar
 1Hz binned 20dbar between 200dbar and 50dbar
 1Hz non-binned from 50dbar to the surface

2.4.4.1 Beginning of mission, initial configuration

2.4.4.1.1 Ensuring default state

>> disable
<< disable state=disabled

>> dataset delete all
<< dataset delete all

>> config delete all
<< config delete all

>> schedule delete all
<< schedule delete all

>> group delete all
<< group delete all

2.4.4.1.2 Group definition

In this example, only an RBRargo3 C.T.D is available on the float. The float will acquire and transmit the pressure, the
salinity (with dynamic correction) and the temperature:

>> group create gr_pts
<< group create gr_pts
>> group gr_pts channellist=seapressure_00|salinitydyncorr_00|temperature_00
<< group gr_pts channellist=seapressure_00|salinitydyncorr_00|temperature_00

2.4.4.1.3 Schedule definition
The following schedule definition follows the example above (see diagram).

>> schedule create sch_asc_pts
<< schedule create sch_asc_pts
>> schedule sch_asc_pts grouplist=gr_pts stream=off storage=on mode=regimes
<< schedule sch_asc_pts grouplist=gr_pts stream=off storage=on mode=regimes

Some systems rely on instruments streaming data rather than storing it. The stream and storage parameters of
the schedule command can accomplish this.

RBR#0014818revB 22

>> schedule sch_asc_pts direction=ascending count=3 reference=seapressure_00
finalboundary=0 boundary1=500 binsize1=50 period1=10000 boundary2=200
binsize2=20 period2=1000 boundary3=50 binsize3=0 period3=1000
<< schedule sch_asc_pts direction=ascending count=3 reference=seapressure_00
finalboundary=0 boundary1=500 binsize1=50.0 period1=10000 boundary2=200
binsize2=20.0 period2=1000 boundary3=50 binsize3=0.0 period3=1000

2.4.4.1.4 Configuration definition

>> config create cf_ascent
<< config create cf_ascent
>> config cf_ascent schedulelist=sch_asc_pts
<< config cf_ascent schedulelist=sch_asc_pts

2.4.4.1.5 Deployment parameters
Ensure the deployment gate condition is set to none to ensure sample acquisition is entirely based on the sampling
mode:

>> deployment gate=none
<< deployment gate=none

2.4.4.2 Start of ascent
Ensures the memory is cleared first:

>> dataset delete all
<< dataset delete all

Enable the instrument:

>> enable config=cf_ascent dataset=ds_ascent
<< enable config=cf_ascent dataset=ds_ascent storagemode=normal state=enabled

2.4.4.3 End of ascent, disable logging and download data
Downloading the data from the instrument can be done while a schedule is still enabled (i.e. when the float is
ascending), but this requires careful housekeeping to keep track of what data has been added to the dataset since the
last retrieval. In this example, the logger is stopped before the download commences.

Stop the current deployment:

>> disable
<< disable state=disabled

Determine how much memory has been used:

>> dataset ds_ascent/sch_asc_pts/data bytecount
<< dataset ds_ascent/sch_asc_pts/data bytecount=3501260

RBR#0014818revB 23

Now loop over the data to download it in chunks:

>> download ds_ascent/sch_asc_pts/data bytecount=<chunk-size> bytestart=0
<< download ds_ascent/sch_asc_pts/data bytecount=<chunk-size> bytestart=0<cr><lf>
<bytes[start…bytecount]-of-data><crc>

>> download
<< download ds_ascent/sch_asc_pts/data bytecount=<chunk-size> bytestart=<1 × chunk-
size><cr><lf> <bytes[start…bytecount]-of-data><crc>

>> download
<< download ds_ascent/sch_asc_pts/data bytecount=<chunk-size> bytestart=<2 × chunk-
size><cr><lf> <bytes[start…bytecount]-of-data><crc>
...
...
>> download
<< download ds_ascent/sch_asc_pts/data bytecount=<final-chunk-size> bytestart= <(n - 1)
× chunk-size><cr><lf> <bytes[start…bytecount]-of-data><crc>

The data returned by the download command has a CRC value at the end. This can be used to verify the integrity of the
download, but should not be stored. All chunks should be concatenated together.

Parsing the resultant data block can be done according to the description in the Sample data storage format section.
Briefly, each record consists of an unsigned, 8-byte/64-bit integer timestamp and a 4-byte IEEE 754 floating-point
number value for each channel.

2.4.5 RBRargo BGC with multiple schedules and different configurations
In the context of a BGC Argo float with many sensors, having different schedules for each sensor helps save power and
can dramatically increase the lifetime of the float. This is easily achieved with the instrument by configuring multiple
groups/schedules.

Here is a concrete example of an Argo BGC float configuration.

During ascending:

 Salinity, temperature, and pressure sampled
 1Hz binned 10dbar between 2000dbar and 1000dbar
 1Hz binned 1dbar between 1000dbar and 50dbar
 1Hz non-binned between 50dbar and 0dbar

 ODO concentration, ODO temperature sampled
 20s binned 10dbar between 1000dbar and 250dbar
 5s binned 2dbar between 250dbar and 0dbar

 pH
 500s non-binned between 1000dbar and 250dbar
 20s non-binned 250dbar and 0dbar

 BBP700/Chlorophyll/FDOM
 10s binned 10dbar between 2000dbar and 250dbar
 5s binned 2dbar between 250dbar and 0dbar

 Downwelling PAR and irradiance at 412nm, at 443nm, at 490nm
 5s binned 2dbar between 250dbar and 0dbar

RBR#0014818revB 24

During park:

 Salinity, temperature, pressure
 continuous every 6h

 ODO concentration, ODO temperature
 continuous every 12h

2.4.5.1 Beginning of the mission, initial configuration

2.4.5.1.1 Ensuring default state

>> disable
<< disable status=disabled

>> dataset delete all
<< dataset delete all

>> config delete all
<< config delete all

>> schedule delete all
<< schedule delete all

>> group delete all
<< group delete all

2.4.5.1.2 Group definitions
PTS group

>> group create gr_pts
<< group create gr_pts
>> group gr_pts channellist=seapressure_00|salinitydyncorr_00|temperature_00
<< group gr_pts channellist=seapressure_00|salinitydyncorr_00|temperature_00

ODO group

>> group create gr_odo
<< group create gr_odo
>> group gr_odo channellist=seapressure_00|oxygenconcentration_00|odotemperature_00
<< group gr_odo channellist=seapressure_00|oxygenconcentration_00|odotemperature_00

pH group

>> group create gr_ph
<< group create gr_ph
>> group gr_ph channellist=seapressure_00|ph_00
<< group gr_ph channellist=seapressure_00|ph_00

When using one channel on one schedule and the same channel (or one of its supporting channels) on another
schedule, their sampling frequency should be multiple. See schedule command for more details.

RBR#0014818revB 25

BBPFL group

>> group create gr_bbpfl
<< group create gr_bbpfl
>> group gr_bbpfl channellist=seapressure_00|backscatter_00|chlorophyll_00|fdom_00
<< group gr_bbpfl channellist=seapressure_00|backscatter_00|chlorophyll_00|fdom_00

Radiometry group

>> group create gr_radiometry
<< group create gr_radiometry
>> group gr_radiometry channellist=seapressure_00|par_00|irradiance_00|irradiance_01|
irradiance_02
<< group gr_radiometry channellist=seapressure_00|par_00|irradiance_00|irradiance_01|
irradiance_02

2.4.5.1.3 Schedule definitions
PTS ascending schedule

>> schedule create sch_asc_pts
<< schedule create sch_asc_pts
>> schedule sch_asc_pts grouplist=gr_pts stream=off storage=on mode=regimes
<< schedule sch_asc_pts grouplist=gr_pts stream=off storage=on mode=regimes
>> schedule sch_asc_pts direction=ascending count=3 reference=seapressure_00
finalboundary=0 boundary1=2000 binsize1=10 period1=1000 boundary2=1000
binsize2=1 period2=1000 boundary3=50 binsize3=0 period3=1000
<< schedule sch_asc_pts direction=ascending count=3 reference=seapressure_00
finalboundary=0 boundary1=2000 binsize1=10.0 period1=1000 boundary2=1000
binsize2=1.0 period2=1000 boundary3=50 binsize3=0.0 period3=1000

ODO ascending schedule

>> schedule create sch_asc_odo
<< schedule create sch_asc_odo
>> schedule sch_asc_odo grouplist=gr_odo stream=off storage=on mode=regimes
<< schedule sch_asc_odo grouplist=gr_odo stream=off storage=on mode=regimes
>> schedule sch_asc_odo direction=ascending count=2 reference=seapressure_00
finalboundary=0 boundary1=1000 binsize1=10 period1=20000 boundary2=250
binsize2=2 period2=5000
<< schedule sch_asc_odo direction=ascending count=2 reference=seapressure_00
finalboundary=0 boundary1=1000 binsize1=10.0 period1=20000 boundary2=250
binsize2=2.0 period2=5000

 pH ascending schedule

>> schedule create sch_asc_ph
<< schedule create sch_asc_ph
>> schedule sch_asc_ph grouplist=gr_ph stream=off storage=on mode=regimes
<< schedule sch_asc_ph grouplist=gr_ph stream=off storage=on mode=regimes

RBR#0014818revB 26

>> schedule sch_asc_ph direction=ascending count=2 reference=seapressure_00
finalboundary=0 boundary1=1000 binsize1=0 period1=500000 boundary2=250 binsize2=0
period2=20000
<< schedule sch_asc_ph direction=ascending count=2 reference=seapressure_00
finalboundary=0 boundary1=1000 binsize1=0.0 period1=500000 boundary2=250 binsize2=0.0
period2=20000

BBPFL ascending schedule

>> schedule create sch_asc_bbpfl
<< schedule create sch_asc_bbpfl
>> schedule sch_asc_bbpfl grouplist=gr_bbpfl stream=off storage=on mode=regimes
<< schedule sch_asc_bbpfl grouplist=gr_bbpfl stream=off storage=on mode=regimes
>> schedule sch_asc_bbpfl direction=ascending count=2 reference=seapressure_00
finalboundary=0 boundary1=2000 binsize1=10 period1=10000 boundary2=250 binsize2=2
period2=5000
<< schedule sch_asc_bbpfl direction=ascending count=2 reference=seapressure_00
finalboundary=0 boundary1=2000 binsize1=10.0 period1=10000 boundary2=250 binsize2=2.0
period2=5000

Radiometry ascending schedule

>> schedule create sch_asc_radiometry
<< schedule create sch_asc_radiometry
>> schedule sch_asc_radiometry grouplist=gr_radiometry stream=off storage=on
mode=regimes
<< schedule sch_asc_radiometry grouplist=gr_radiometry stream=off storage=on
mode=regimes
>> schedule sch_asc_radiometry direction=ascending count=1 reference=seapressure_00
finalboundary=0 boundary1=250 binsize1=2 period1=5000
<< schedule sch_asc_radiometry direction=ascending count=1 reference=seapressure_00
finalboundary=0 boundary1=250 binsize1=2.0 period1=5000

PTS park schedule

>> schedule create sch_park_pts
<< schedule create sch_park_pts
>> schedule sch_park_pts grouplist=gr_pts stream=off storage=on mode=continuous
period=21600000 castdetection=off
<< schedule sch_park_pts grouplist=gr_pts stream=off storage=on mode=continuous
period=21600000 castdetection=off

ODO park schedule

>> schedule create sch_park_odo
<< schedule create sch_park_odo
>> schedule sch_park_odo grouplist=gr_odo stream=off storage=on mode=continuous
period=43200000 castdetection=off
<< schedule sch_park_odo grouplist=gr_odo stream=off storage=on mode=continuous
period=43200000 castdetection=off

RBR#0014818revB 27

2.4.5.1.4 Configuration definitions
Ascent configuration

>> config create cf_ascent
<< config create cf_ascent
>> config cf_ascent schedulelist=sch_asc_pts|sch_asc_odo|sch_asc_ph|sch_asc_bbpfl|
sch_asc_radiometry
<< config cf_ascent schedulelist=sch_asc_pts|sch_asc_odo|sch_asc_ph|sch_asc_bbpfl|
sch_asc_radiometry

Park configuration

>> config create cf_park
<< config create cf_park
>> config cf_park schedulelist=sch_park_pts|sch_park_odo
<< config cf_park schedulelist=sch_park_pts|sch_park_odo

2.4.5.1.5 Deployment parameters
Ensure the deployment gate condition is set to none to ensure sample acquisition is entirely based on the sampling
mode:

>> deployment gate=none
<< deployment gate=none

2.4.5.2 Ascent mode
Just before ascent, enable the instrument in the ascent configuration:

>> enable config=cf_ascent dataset=ds_ascent
<< enable config=cf_ascent dataset=ds_ascent storagemode=normal state=enabled

2.4.5.3 End of ascent
Disable the ongoing deployment:

>> disable
<< disable state=disabled

Read info about available datasets:

<< dataset list
>> dataset list=ds_ascent

>> dataset ds_ascent status schedulelist
<< dataset ds_ascent status=closed schedulelist=sch_asc_pts|sch_asc_odo|sch_asc_ph|
sch_asc_bbpfl|sch_asc_radiometry

RBR#0014818revB 28

Get data bytecount for each schedule. Take the first schedule as an example:

<< dataset ds_ascent/sch_asc_pts/data
>> dataset ds_ascent/sch_asc_pts/data bytecount=123456 samplecount=6172 datatype=float32

Download the PTS data by looping over the data to download it in chunks:

>> download ds_ascent/sch_asc_pts/data bytecount=1024 bytestart=0
<< download ds_ascent/sch_asc_pts/data bytecount=1024
bytestart=0<cr><lf><1024bytes><crc>

<< download
>> download ds_ascent/sch_asc_pts/data bytecount=1024
bytestart=1024<cr><lf><1024bytes><crc>
....
<< download
>> download ds_ascent/sch_asc_pts/data bytecount=560
bytestart=122880<cr><lf><560bytes><crc>

Download the ODO data by looping over the data to download it in chunks:

>> download ds_ascent/sch_asc_odo/data bytecount=1024 bytestart=0
<< download ds_ascent/sch_asc_odo/data bytecount=1024
bytestart=0<cr><lf><1024bytes><crc>

<< download
>> download ds_ascent/sch_asc_odo/data bytecount=1024
bytestart=1024<cr><lf><1024bytes><crc>
....
<< download
>> download ds_ascent/sch_asc_odo/data bytecount=420
bytestart=6144<cr><lf><420bytes><crc>

 Download pH, BBPFL, and radiometry data in the same way.

2.4.6 RBRargo introspection
The list of channels populated onto an instrument and used by a float controller is subject to change depending on the
float model (for example, some floats rely on hydrostatic pressure, others on absolute pressure) and the RBRargo
model (e.g. an RBRargo C.T.D vs an RBRargo C.T.D.ODO).

The following list is the available channels populated for an RBRargo C.T.D.

Channel label Description

conductivity_00 Conductivity (mS/cm)

temperature_00 Marine temperature (°C)

pressure_00 Absolute pressure (dbar) (at surface will read around 10 dbar)

RBR#0014818revB 29

Channel label Description

seapressure_00 Hydrostatic pressure (dbar) (at surface will read around 0 dbar)

salinity_00 Salinity without dynamic correction applied (PSU)

conductivitycelltemperature_00 Internal temperature of the conductivity cell (°C)

temperaturedyncorr_00 Marine temperature corrected for C-T lag (°C)

salinitydyncorr_00 Salinity with dynamic correction applied (PSU)

cnt_00 Counts, number of sample used to calculate a bin average, when not binning,
this is reporting the value 1

A complete list of possible labels is provided in the section Channel labels.

For platforms handling different models of the RBRargo, it is possible to determine the available channels by just
issuing the channels command:

>> channel list
<< channel list=conductivity_00|temperature_00|pressure_00|sea_pressure_00|salinity_00|
conductivitycelltemperature_00|temperaturedyncorr_00|salinitydyncorr_00|cnt_00

2.4.7 Providing platform details to end-users
Some end-users want to keep the history of the sensor's details (for example, the pressure sensor model). RBR Ltd.
maintains a database of all instruments produced and their associated sensor. Providing the serial number (id
command) should be sufficient in practice. However, some end users might want to have all possible information
readily available from the log files sent by the float to the shore.
The instrument dumpcommand outputs the result of all the other possible commands. If the output of that command
is too large to be handled by the host, RBR recommends including the results from the calibration, sensor, id, and
instrument commands in the log files.

2.4.8 Sensor drift monitoring at the surface
It is possible to partly monitor the drift of different sensors when the float is at the surface, and sensors are exposed to
air. Pressure measurements at the surface give a direct offset correction:

>> calibration pressure_00 datetime=20240501140000 offset=0.2
<< calibration pressure_00 datetime=20240501140000 offset=200.00000e-3

Optical dissolved oxygen measurements in the air will also provide a reference for drift correction (see published
literature). Measuring conductivity at the surface not only gives the opportunity to confirm that the float is effectively at
the surface but also allows the monitoring of any electronic drift in the conductivity, as the sensor should read around
0. Conductivity in air measurements needs to be taken with precaution. It is advised to acquire several measurements
in air and not just one, as waves might wash the conductivity cell. If only one conductivity value is to be transmitted to
shore, always use the lowest value. If possible, it is preferable to report directly the conductivity and not the salinity as
the PSS78 calculation will saturate at 0 (see pss78 - derivation of Practical Salinity (1978)).

RBR#0014818revB 30

2.4.9 Energy tracking
The instrument tracks energy consumed via the command instrument power external.

2.5 Tips for system integrators

2.5.1 Deployment start time
The command deployment allows the start time of a deployment to be accessed, modified, or ignored. This concept of a
start time is beneficial mainly to standard product users. In the context of an integration with a host controller, it is
generally useless, scheduling of logging or streaming being controlled directly by the host controller. Furthermore, on
some system the clock might just be discarded and timestamping applied by host controller (streaming instruments).

The use of the start time is dictated by the gating condition set. The time gating condition is the only one which will use
the starttime to gate a deployment.

If a deployment is required to start at a specific time in the future, configure the deployment gate for time as follows:

>> deployment starttime=20000101000000 gate=time

However, if the deployment is not required to start at a certain time then we recommend using none as the gating
option:

>> deployment gate=none

2.5.2 Sampling rates
The schedule command allows the user to set faster than 1Hz sampling rate by specifying a number of milliseconds
below 1000. It also reports a list of milliseconds values (see availablefastperiods parameter). As there is in many cases
no direct conversion between an integer number of milliseconds and a frequency in Hertz, the following explains how to
convert from one to another.

2.5.2.1 Converting from Hz to milliseconds
If Fs is the sampling rate in Hz, then the number of milliseconds to be used as a parameter for the schedule command, is

calculated as (using integer division):

2.5.2.2 Converting from milliseconds to Hz
If Ts is the number of milliseconds reported by the logger as the period (see schedule command), then the

corresponding sampling rate Fs in Hz, is calculated as (using integer division):

2.5.2.3 Examples
If the logger needs to be deployed at 13Hz, and this sampling rate is available, then the period to be used would be 77
ms.

If the logger is deployed with a period of 53 ms, the effective sampling rate is 19Hz.

The onboard RTC clock minimum date time is 2000/01/01 00:00:00 and the maximum date time is 2099/31/12
23:59:59.

RBR#0014818revB 31

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828430
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828430
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828430

2.5.3 Future proofing development
The chapter Command Processing and Timeouts gives a good overview on best practices on how to parse and handles
logger commands.

For OEM customers using more than one configuration or planning to, it is best practice to inspect which channels are
available with the channel command:

>> channel
<< channel count=5 list=conductivity_00|temperature_00|pressure_00|sea_pressure_00|
salinity_00

2.5.4 Power management and power cycling behaviour
The RBR logger can accommodate two power sources: internal batteries (see instrument power internal) or an
external power source (see instrument power external).

The RBR logger handles power management automatically, switching to one or the other power source depending on
availability. The instrument also automatically handles which power domains should be enabled or not depending on
their current state (sampling, asleep, in communications). In systems which power cycle the logger, a full reset will be
obtained by powering off the unit for at least 5 minutes to allow time for internal capacitors to discharge.

There is no dedicated battery to maintain the onboard clock. As a consequence, the onboard clock might be lost every
time there is no power source available (see Note). In such cases, the date and time may be reset to 2000-01-01
00:00:00. However, if the clock is lost while logging, the instrument will try to reset the clock to midnight of the day
following the last known good sample. For example, if the last sample stored was at 2024-03-17 15:34:26.000, the
instrument would try to reset the clock to 2024-03-18 00:00:00.000 before continuing to log data. Although the
instrument no longer has any true idea of what the actual date and time are, this strategy does at least ensure that
stored (and streamed) timestamps continue to advance monotonically.

If an instrument is power cycled while it is logging or streaming, it will continue logging and/or streaming, even if the
RTC clock is reset as described above. This activity will continue after the initialization period, the settling time and the
read time periods have expired (see channel) following the restoration of power.

In order to enforce a full hardware reset, this sequence should be followed:

1. power off the unit
2. wait 5 minutes
3. power on the unit
4. wait 4 seconds before sending any commands (initialization time)

Upon power cycling, the instrument may take up to 4 seconds to initialize. During that initialization period,
characters transmitted to the instrument might not be received, and commands might not be processed
correctly.

When the instrument is not powered, all UART and RS232 lines must be in high impedance mode, with no pull-
up resistors connected

The amount of time required for the onboard clock to lose the date and time following the removal of all
power may vary between instrument types. For some it may be only a few minutes, for others it can be several
hours.

RBR#0014818revB 32

2.5.5 Error handling
2.5.5.1 Instrument not responding
If the instrument stops responding to any commands, first apply a full hardware reset (as described above).
Send the command id followed by the command disable; if the instrument is still not responding, repeat the same
procedure with a baudrate 115200 bps (default baudrate if configured baudrate lost).

2.5.5.2 Instrument reporting a hardware failure
If the instrument is reporting a hardware failure error code as described in Information, warning, and error codes, one
course of action is to apply a full hardware reset (as described above).

2.5.5.3 Instrument reporting error codes in the measurements
Most of the error codes reported reflect a hardware failure of some sort, except for Error-14, which could just reflect a
value outside of an equation.
Sometimes, this error can be transient and can be resolved by itself.
However, if the instrument is always reporting the same error for some period of time, one possible course of action is
to disable logging/scheduling, do not issue any poll for 10 seconds, and enable the unit again.
If this does not resolve the issue, a full hardware reset (as described above), is advised. If one full hardware reset does
not resolve the issue, it is unlikely that performing other full hardware resets will do.

In any case, only channels reported as Error should be discarded. A classic example is an instrument carrying cabled
sensors. If a cable is damaged, the measurements associated with the sensor are likely to be reported as errors.
Applying previous methods won't help but measurements from other channels are still valid and useful.

2.5.6 Electronic static discharge

2.6 Migrate from Gen3 to Gen4 platforms

2.6.1 Introduction
For customers who have used Gen3 API, migrating to the Gen4 API will require substantial changes in any interfacing
software used. Some commands have been changed, and some new commands have been introduced. This quick-start
section is intended to help guide users through these changes to ensure a smooth transition.

2.6.2 Identifying a Gen4 platform
Identifying a platform running the Gen4 API can be easily identified via the fwtype parameter of the id command.

In the case of the L3.5 platform (Gen4 API), one would obtain:

>> id fwtype
<< id fwtype=120

Whereas, in the case of the L3 platform (Gen3 API), one would obtain:

>> id fwtype
<< id fwtype = 104

Various electrical and electronic components are vulnerable to ESD. RBR PCBAs should be handled in a static
controlled environment

RBR#0014818revB 33

2.6.3 Removed commands
The following commands have been removed:

 bsl: replaced by the instrument flash command
 channels: replaced by the channel command
 confirmation: replaced by the settings command
 ddsampling: replaced by the schedule command
 fetch: replaced by the poll command.

With L3 platform:

>> fetch
<< 2023-01-04 11:50:49.000, 12.7052 dbar, 18.1745 C

With L4 platform:

>> poll
<< 2024-10-21 11:50:49.000 18.1745130 12.7052970 2.69308210
(The exact form of the output will also depend on the settings of the
outputformat command.)

 getall: replaced by the instrument dump command
 hwrev: replaced by the pcba command
 info: replaced by the instrument command
 memclear: replaced by the dataset delete command
 memformat: not replaced
 meminfo: replaced by the storage command
 outputformat: replaced by the instrument outputformat command
 pauseresume: not replaced
 permit: not replaced.
 power: replaced by the instrument power command
 powerexternal: replaced by the instrument power external command
 powerinternal: replaced by the instrument power internal command
 prompt: replaced by the settings command
 regimes: replaced by the schedule command
 regime: replaced by the schedule command
 sampling: replaced by the schedule and deployment command
 thresholding: replaced by the deployment gate command
 twisactivation: replaced by the deployment gate command
 readdata: replaced by the download command
 serial: replaced by the link serial command
 streamserial: replaced by the schedule command
 streamusb: replaced by the schedule command
 wifi: not replaced

RBR#0014818revB 34

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/105676882/flash

2.6.4 Improved commands and new parameters
 deployment
 enable
 disable
 verify
 channel
 calibration
 instrument outputformat
 settings
 sensor

2.6.5 New commands
For more information on the function and intention of these new commands see the individual command pages or
see General overview:

 config
 dataset
 factory
 group
 instrument
 link
 parameters
 pcba
 poll
 schedule

2.7 Download stored data
Memory is organized onboard the instrument by datasets, then by schedules, then by data (samples), events and
metadata.

The list of datasets available is obtained with the dataset command:

>> dataset
<< dataset count=3 maxcount=20 list=GullCove_aug22|GullCove_sep22|GullCove_oct22

The dataset command allows to list the different schedules available in a particular dataset:

>> dataset GullCove_aug22 schedulelist
<< dataset GullCove_aug22 schedulelist=sched_CTD|sched_ODO

Each schedule contains data, events, and metadata (refer to the dataset command). In order to download the data of
one dataset's schedule, it is possible to check first the amount of data to be downloaded:

>> dataset GullCove_aug22/sched_CTD/data bytecount
<< dataset GullCove_aug22/sched_CTD/data bytecount=2608

RBR#0014818revB 35

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828537

Then download the data with the download command (here in chunks of 500 bytes):

>> download GullCove_aug22/sched_CTD/data bytecount=500 bytestart=0
<< download GullCove_aug22/sched_CTD/data bytecount=500 bytestart=0<cr><lf><bytes[0…
499]-of-data><CRC>

>> download
<< download GullCove_aug22/sched_CTD/data bytecount=500 bytestart=500<cr><lf><bytes[500…
999]-of-data><CRC>

>> download
<< download GullCove_aug22/sched_CTD/data bytecount=500
bytestart=1000<cr><lf><bytes[1000…1499]-of-data><CRC>

>> download
<< download GullCove_aug22/sched_CTD/data bytecount=500
bytestart=1500<cr><lf><bytes[1500…1999]-of-data><CRC>

>> download
<< download GullCove_aug22/sched_CTD/data bytecount=500
bytestart=2000<cr><lf><bytes[2000…2499]-of-data><CRC>

>> download
<< download GullCove_aug22/sched_CTD/data bytecount=108
bytestart=2500<cr><lf><bytes[2500…2607]-of-data><CRC>

It is also possible to download the events recorded during the deployment:

>> dataset GullCove_aug22/events bytecount
<< dataset GullCove_aug22/events bytecount=480
>> download GullCove_aug22/events bytecount=500 bytestart=0
<< download GullCove_aug22/events bytecount=480 bytestart=0<cr><lf><bytes[0…479]-of-
events><CRC>

The 2-bytes cyclic redundancy check should be ignored when parsing.

RBR#0014818revB 36

3 Commands

3.1 Communications

3.1.1 link
Usage

>> link [type]

>> link serial [baudrate | mode | availablemodes | availablebaudrates]

Security

Open.

Description

The link command provides information about the available communication links. When issued without the use of a
sub command, the current communication link over which the command was received, is returned.

The communication link is returned as a type field. The possible responses are:

 usb
 serial

Examples

>> link
<< link type=usb

Here, communication is taking place over the usb link.

>> link
<< link type=serial

Here, communication is taking place over the serial link. To access parameters for a serial link, see the serial sub
command.

3.1.1.1 serial
Usage

>> link serial [baudrate | mode | availablemodes | availablebaudrates]

Security

Unsafe - no modifications while the instrument is enabled.

Description

This command can be used to either report or set the parameters which apply to the serial link. The command can be
issued over either the USB or serial links, but care must obviously be taken if the serial link is used to change its own

RBR#0014818revB 37

operating parameters. In this case, new settings are acknowledged while the old parameters are still in force, then the
changes are applied. The next command sent must use the new configuration of the link if the logger is to recognize it.

Modifications to parameters may not be made while logging is enabled; this is to avoid disturbing any real-time data
output.

The individual parameters are described below.

 baudrate [= <baudrate>]: baudrate of the serial link.
 mode [= <mode>]: this parameter allows the electrical interface standard used for the serial link to be changed,

the available choices being listed below. Different modes typically require differences in hardware, so changing
modes may not always be appropriate. The most common mode is RS-232, and this is the default setting
typically shipped from the factory. If an instrument has been built to use one of the other interfaces, the mode
will be correctly set when the instrument is shipped.

1. .rs232: This is the legacy standard used by default on most equipment with serial ports, referred to as RS-232,
EIA-232, TIA-232, or variations on one of these depending on the revision, but for most practical purposes they
are interchangeable. The logger's implementation of RS-232 is always full duplex, with no hardware flow control
lines required: transmit, receive and ground are the three connections needed.

2. rs485f: This is the full duplex version of the RS-485 standard (also EIA-485, TIA-485, etc), which permits higher
speeds and/or longer distances than RS-232. A five-conductor cable is required; two lines each for both receive
and transmit, plus a ground connection. In most cases a simple cable will work, but at extreme speeds and
distances, the transmit and receive line pairs may require impedance matching termination components. The
logger does not include these, as they will be specific to each individual installation.

3. uart: This offers a logic level (0-3.3V swing) serial interface to the UART on the logger’s serial port. The “idle”
state of the line, i.e. the state of the serial transmit line during the time before and after transmission of data
bytes, is high (3.3V). This may be a useful option for OEM integrators, typically over short distances to another
piece of equipment, where the communication link is not exposed to the outside world. In this mode, it is worth
noting that the serial receiver interface on the logger has a (nominal) 5KΩ pulldown resistor to 0V in the circuit at
all times. As such, in order to minimize current consumption while there is no serial activity, it is recommended
that the serial transmit signal coming from the circuit that the logger is interfaced to is either tristated off (high
impedance) or held at a logic low (0V).

4. uart_idlelow: the same as uart, but with inverted logic levels, so that the "idle" state is low (0V). This may be
thought of as the same logic states as RS232, except that it utilizes 0-3.3V logic levels.

 availablemodes: report the list of available modes. This value is only reported when explicitly requested.
 availablebaudrates: report the list of available baudrates. This value is only reported when explicitly requested.

 Examples

>> link serial
<< link serial baudrate=19200 mode=rs232

Sending the serial command without any arguments will result in all parameters being returned. Note the absence
of availablemodes and availablebaudrates.

>> link serial baudrate=115200
<< link serial baudrate=115200

Set the serial baudrate to 115200.

RBR#0014818revB 38

>> link serial mode
<< link serial mode=rs232
>> link serial mode=rs485f
<< link serial mode=rs485f

Request the serial mode, then set it to rs485f.

>> link serial availablebaudrates
<< link serial availablebaudrates=115200|19200|9600|4800|2400|1200|230400|460800

Request the availablebaudrates.

>> link serial availablemodes
<< link serial availablemodes=rs232|rs485f|uart|uart_idlelow

Request the availablemodes.

3.1.2 sleep
Usage

>> sleep

Security

Open.

Description

Immediately shuts down communications and implements any power saving measures which are possible, over-riding
the 10-second timeout which normally invokes these actions (see Section Timeouts, output blanking, and power
saving). Power saving measures typically include:

 Any interface circuitry used for a Serial link.
 Sensor channels activated only for the purpose of satisfying a poll command.

Any scheduled sampling activity is not affected. The sleep command does not attempt to power down a USB link,
because there is always enough power available via USB to run the logger's basic functions; sensor channels used for a
poll command will still be shut down.

Examples

>> settings confirmation
<< settings confirmation=off

>> sleep
% No response after issuing the sleep command

If settings confirmation=on then the the sleep command will provide a confirmation response prior to
performing the power saving measures, otherwise no response is expected.

RBR#0014818revB 39

The sleep command is issued with the confirmation state = off. The instrument will not respond and will
immediately move into a low power state.

>> settings confirmation
<< settings confirmation=on

>> sleep
<< sleep

The sleep command is issued with the confirmation state = on. The instrument will respond with the command
prior to moving into a low power state.

3.2 Realtime data

3.2.1 poll
Usage

>> poll [channellist=<channel_label_list...>] |

[grouplist=<group_label_list...>]

Security

Open.

Description

Requests an "on-demand" sample from the specified channel(s) in the instrument. If recent scheduled sample data is
available for a channel, that value may also be returned to satisfy the poll request; "recent" in this context means less
than one second old. If recent data is not available, a sample is explicitly acquired for the benefit of the poll. A sample
acquired only for poll is never stored in memory. If the instrument is not actively logging, then all requested channels
will be sampled explicitly for the poll request.

The instrument simply responds with the <sample-data>; depending on the configured settling time (or power-on
settling delay) for the sensors sampled, there may be a noticeable delay before the <sample-data> appears. Refer to the
channel command for details of access to the settling time of each channel.

The channel(s) to sample are specified by one of two methods; only one method may be used with any given instance of
the poll command. Issuing the command without any channel specification has the same effect as specifying poll
channellist=<all_channel_labels> - see below. The order in which the channel data is sent is the same as reported in
response to the channel channellist command.

 channellist=<channel_label_list…>, specifies the channels to poll from. Labels in the list must be separated by a
pipe character ("|"), with no spaces. If the desire is to specify all the channels then just use the poll command by
itself without any argument. The order in which the channel data is sent is the same as reported by the
channellist.

 grouplist=<group_label_list…>, specifies the groups of channels to be sampled. Labels in the list must be
separated by a pipe character ("|"), with no spaces. Data will be returned for each group in the order they are
specified. For a each group, the order in which the channel data is sent is the same as reported in response to the
group <group_label> chanellist command. The specified groups must already exist; it can be one of the groups

channellist can only contain either one channel label or the ‘all’ keyword on the L3.5 platform.

RBR#0014818revB 40

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828201
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13830111
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828541

created for scheduled sampling, or it can be any one of a number of groups created by the user specifically for
polling operations.

The output format of the <sample-data> is determined by the instrument outputformat command.

Once the polling operation has completed the sensors are left powered on for eight (8) seconds; this is to avoid
excessive power cycling when multiple poll commands are sent within a short time. If power is of concern it is
recommended to use the sleep command following a poll to perform a controlled power down of the system.

Examples

The exact format of the response is determined by properties set with the outputformat command. For clarity, most
examples are shown with all options turned off, but there is one example to illustrate that the word polling is always
used as the <schedule_label> if that property is enabled. This allows polled samples to be identified amongst a
sequence of scheduled samples being streamed in real time.

These examples use the following conditions in the outputformat.

>> instrument outputformat
<< instrument outputformat sn=off schedulelabel=off datetime=on crc=off encoding=ascii
datatype=float32

grouplist can only contain one group on the L3.5 platform.

The schedule label polling will be displayed if outputformat schedulelabel = on has been configured.

If a channel appears multiple times in the poll request, the same data reading will be returned at all the
appropriate locations for that channel.

>> poll channellist=pressure_00|conductivity_00|temperature_00|pressure_00
<< 2024-10-21 11:51:58.000 12.7049270 35.3154081 18.1742890 12.7049270

The reading for pressure_00 is returned at position 1 and position 4 as requested

>> group g_depth channellist
<< group g_depth channellist=pressure_00|seapressure_00|depth_00

>> group g_ctd channellist
<< group g_ctd channellist=conductivity_00|temperature_00|pressure_00

>> poll grouplist=g_depth|g_ctd
<< 2024-10-21 11:52:58.000 22.7035490 12.7035490 12.7035490 35.3154081 18.1742890
22.7049270

The reading for pressure_00 is returned at position 1 and position 6 as requested from the specified groups.

RBR#0014818revB 41

>> poll
<< 2024-10-21 11:50:49.000 18.1745130 12.7052970 2.69308210

Poll a sample from all channels. Data will be returned in the order the channels are specified in channel list.

>> poll channellist=temperature_00
<< 2024-10-21 11:50:55.000 18.1742890

Poll a single channel, temperature_00 .

>> poll grouplist=g_depth
<< 2024-10-21 11:50:58.000 12.7049270 2.69273150

Poll a single group of channels. The output of the readings are based on the order of channels in group g_depth
channellist.

>> poll channellist=conductivity_00|temperature_00|pressure_00
<< 2024-10-21 11:51:58.000 35.3154081 18.1742890 12.7049270

Poll from a list of channels. Data will be returned in the order the channels are specified in the list.

>> poll grouplist=g_depth|g_ctd
<< 2024-10-21 11:52:58.000 12.7035490 2.69152730,35.3154081 18.1742890 12.7049270

Poll from a list of groups. In this example, data for g_depth will be returned, then data for g_ctd.

>> instrument outputformat
<< instrument outputformat sn=off schedulelabel=on datetime=on crc=off encoding=ascii
datatype=float32

>> poll grouplist=g_depth
<< polling 2024-10-21 11:53:58.000 12.7035490 2.69152730

Poll from a group when the <schedule_label> is enabled in the output formatting.

3.3 Instrument details

3.3.1 id
Usage

>> id [model | serial | version | fwtype]

Security

Open.

RBR#0014818revB 42

Description

This is a read-only command that reports basic information about the instrument:

 model, model name of the instrument; for example, RBRconcerto4.
 version, firmware version in <major>.<minor>.<patch>format; for example, 1.14.5.
 serial, serial number is always reported using six digits, padded with leading zeroes if necessary; for example

092431.
 fwtype, reports a firmware type code which depends on the product range that the instrument belongs to; for

example, the code for an RBRsolo4, would be 130.

Examples

>> id
<< id model = RBRoem, serial = 850032, version = 1.0.12, fwtype = 150

>> id serial
<< id serial = 850032

>> id model
<< id model = RBRoem

>> id version
<< id version = 1.0.12

>> id fwtype
<< id fwtype = 150

3.3.2 id4
Usage

>> id4 [model | sn | fwversion | fwtype]

Security

Open.

This command is designed to be backward compatible with previous generations and, as such, does not
conform to the Gen4 API.

RBR#0014818revB 43

Description

 model, model name of the instrument; for example, RBRconcerto4.
 fwversion, firmware version in <major>.<minor>.<patch>format; for example, 1.14.5.
 sn, serial number is always reported using six digits, padded with leading zeroes if necessary; for example

092431.
 fwtype, reports a firmware type code which depends on the product range that the instrument belongs to; for

example, the code for an RBRsolo4, would be 130.

Examples

>> id4
<< id4 model=RBRoem sn=850032 fwversion=1.0.12 fwtype=150

>> id4 sn
<< id4 sn=850032

>> id4 model
<< id4 model=RBRoem

>> id4 fwversion
<< id4 fwversion=1.0.12

>> id4 fwtype
<< id4 fwtype=150

3.3.3 instrument
Usage

>> instrument [state | sn | model | pn | fwversion | fwtype | fwlock | datatype]

>> instrument dump

>> instrument factory reset

>> instrument outputformat

>> instrument power [internal external]

>> instrument reboot

Security

Open.

This is a read-only command that reports basic information about the instrument:

RBR#0014818revB 44

Description

Reports some general information about the instrument:

 state=<state>: the state of the instrument. The possible states are:
 disabled: The instrument has not been enabled. It is not actively running a deployment.
 enabled: The enable command has been issued and the instrument is now running a deployment.

 sn=<serial_number> serial number is always reported using six digits, padded with leading zeroes if necessary;
for example 092431.

 model, model name of the instrument; for example, RBRconcerto4.
 pn=<part_number>: The RBR part number of the instrument
 fwversion, firmware version in <major>.<minor>.<patch>format; for example, 1.14.5.
 fwlock=<on|off>: Indicates if firmware can be updated on the instrument or if it is locked to a specific version.

 The fwlock parameter is set at the factory, and for most instruments it is off, which means that the
standard method of updating instrument firmware using the Ruskin software can be used. For some OEM
applications requiring that the version of firmware does not change, the fwlock is set to on, which
prevents firmware updates by the standard method. If necessary, a special procedure can be used to
override this 'locked' state; please contact RBR Ltd if you believe you need to do this.

 datatype is the numeric format used to store data values in the memory for all channels. For normal
deployments this will be either float32 (IEEE single precision floating point) or float64 (IEEE double precision
floating point). This setting is factory configured; most instruments will use float32, but an instrument with very
high precision sensors may use float64 to maintain the necessary level of resolution.
There is a third format used for calibration purposes, calfloat64; this format is the same numerically as float64,
but no calibration equation is applied to the data. It is presented as a ratio compared to nominal full-scale, so
the expected range is nominally 0.0 to 1.0. The full theoretical range is -2.0 to +2.0 but the output of most
channels will remain within or close to the expected nominal range. The format calfloat64 will be reported only
during a deployment that was enabled using storagemode=calibration; refer to the enable command for more
details.

 fwtype=<firmware_type> is a read-only parameter giving the firmware type code. Possible values are:
 120 for L3.5 instruments

Examples

>> instrument
<< instrument state=disabled sn=210000 model=RBRconcerto3 pn=L3-M13-F15-BEC12-INT12-
SCT16-SP11 fwversion=2.1.0 fwtype=120 fwlock=off datatype=float32

The instrument has not been enabled. It is not actively running a deployment. The firmware is not locked to a
specific version.

>> enable config=profiling dataset=Trial_2
<< enable config=profiling dataset=Trial_2 storagemode=normal state=enabled
>> instrument
<< instrument state=enabled sn=210000 model=RBRconcerto3 pn=L3-M13-F15-BEC12-INT12-
SCT16-SP11 fwversion=2.1.0 fwtype=120 fwlock=off datatype=float32

The enable command has been issued and the instrument is now running a deployment. The firmware is not
locked to a specific version.

>> instrument
<< instrument state=enabled sn=210000 model=RBRconcerto3 pn=L3-M13-F15-BEC12-INT12-
SCT16-SP11 fwversion=2.1.0 fwtype=120 fwlock=off datatype=float32

RBR#0014818revB 45

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/39944902/4+enable

>> disable
<< disable state=disabled

>> instrument
<< instrument state=disabled sn=210000model=RBRconcerto3 pn=L3-M13-F15-BEC12-INT12-
SCT16-SP11 fwversion=2.1.0 fwtype=120 fwlock=off datatype=float32

The instrument was enabled, the disable command was issued and the instrument transitioned to the disabled
state. The instrument is no longer running a deployment.

>> instrument
<< instrument state=disabled sn=210000 model=RBRconcerto3 pn=L3-M13-F15-BEC12-INT12-
SCT16-SP11 fwversion=2.1.0 fwtype=120 fwlock=on datatype=float32

The instrument has not been enabled. It is not actively running a deployment. The firmware is locked to a specific
version so Ruskin will not be allowed to update it.

3.3.3.1 dump
Usage

>> instrument dump

Security

Open.

Description

Provides a multiline response with all configuration parameters stored in the instrument. The first response will contain
a confirmation of the command with a count of the number of lines which will be returned. Each line will be terminated
with a <CR><LF>. Only a single "Ready: " prompt (if enabled) appears after all output is complete. This prompt is not
included in the lines count.

>> instrument dump
<< instrument dump lines=16
<< clock datetime=20000104075152 offsetfromutc=unknown
<< simulation state=off period=600000 channellist=conductivity_00|temperature_00|
pressure_00
<< deployment starttime=20230104000000 status=inactive gate=time simulation=off
<< storage used=1528 remaining=134216192 size=134217728
<< dataset count=3 maxcount=20 list=DeepCove|GullCove_sep22|GullCove_oct22
<< channel count=3 list=conductivity_00|temperature_00|pressure_00
<< channel conductivity_00 type=cond00 address=32 settlingtime=50 readtime=260
guardtime=20 userunits=mS/cm derived=off grouplist=none sensor=none
<< channel temperature_00 type=temp00 address=1 settlingtime=50 readtime=260
guardtime=20 userunits=C derived=off grouplist=none sensor=none
<< channel pressure_00 type=pres00address=2 settlingtime=50 readtime=260 guardtime=20
userunits=dbar derived=off grouplist=none sensor=none
<< calibration conductivity_00 equation=lin datetime=20171218175005
offset=0.0000000e+000 slope=1.0000000e+000 c0=9.9876543e+000 c1=7.5642301e+000
<< calibration temperature_00 equation=lin datetime=20171218175005 offset=0.0000000e+000
slope=1.0000000e+000 c0=9.9876543e+000 c1=7.5642301e+000

RBR#0014818revB 46

<< calibration pressure_00 equation=lin datetime=20171218175005 offset=0.0000000e+000
slope=1.0000000e+000 c0=9.9876543e+000 c1=7.5642301e+000
<< sensor count=3 list=rbr_conductivity_012345|rbr_pressure_987654|RBRtridente_567890
<< sensor rbr_conductivity_012345 sn=012345 pn=000000revA channellist=none
<< sensor rbr_pressure_987654 sn=987654 pn=000000revA channellist=none
<< sensor RBRtridente_567890 sn=567890 pn=000000revA channellist=none
<< Ready:

3.3.3.2 outputformat

Usage

>> instrument outputformat [sn | schedulelabel | datetime | crc | encoding |

datatype]

Security

Open.

Description

Reports or sets properties of the format used to transmit data in real time over any communication link; this format
applies to both polled data, and live streamed data if available.

If no arguments are given, all current property settings are reported.

The properties apply to all active schedules; different formats can not be simultaneously active in different situations.

The default format of the output is as follows:

 The output starts with a <schedule_label>; all information on this line applies to this schedule only.
 Next is a timestamp giving years, months, days, hours, minutes, seconds and thousandths (milliseconds),

punctuated as shown in the example below.
 Then a value for each channel is sent; this is the measured parameter after conversion to physical units

according to the instrument's current calibration.
 All values are shown with enough significant digits to ensure no loss of resolution with the datatype currently in

force.
 All values are shown in 'engineering-notation', which is the same as scientific notation except that the exponents

are constrained to be multiples of three.
 All elements are separated by a space.
 The line terminates with a <CR><LF> pair of characters.

Formally, the default format can be expressed as:

<schedule_label> YYYY-MM-DD hh:mm:ss.ttt <value1> <value2> ... <valueN><CR><LF>

Here is an example of the default format for a 3-channel logger:

sch_fast_CTD 2024-06-10 11:24:14.125 38.6671142e+000 22.0217124e+000 1.95962418e+003<CR><LF>

This default format may be modified by turning some properties on or off. The currently supported parameters are:

 sn [= on | off] determines whether or not the output begins with a preamble consisting of the string RBR,
followed by a space, then the logger's 6-digit serial number. The default state is off.

 schedulelabel [= on | off] determines whether or not the <schedule_label> appears before the timestamp. The
default state is on.

RBR#0014818revB 47

 datetime [= on | off] determines whether or not the timestamp appears. The default state is on.
 crc [= on | off] determines whether or not a Cyclic Redundancy Check (CRC) is included at the end of the line

immediately before the terminating <CR><LF> pair. The default state is off.
The CRC includes all characters already sent on this line, starting with the first, up to and including the last space
character before the <CRC>. The calculation uses the 16-bit CCITT polynomial, f(x)=x^16 + x^12 + x^5 + 1,
feeding each byte into the generator least significant bit first, and using 0xFFFF as the seed value. The format of
the reported CRC is 0xHHHH, where HHHH are four hexadecimal digits; the 0x part of the string is not included in
the CRC.

 encoding [= ascii | binary] determines whether the output is sent in a human-readable ascii form such as that
shown in the example above, or a more compact binary format that is more machine-readable for easier
parsing.

 datatype [= float32 | float64] | [= calfloat64] is the numeric format used to report data values for all channels.
For normal deployments this will be either float32 (IEEE single precision floating point) or float64 (IEEE double
precision floating point), and the end user may specify either option. However, when the instrument's native
data type is float32, specifying datatype=float64 will not improve the actual precision of the values; there will
just be extra meaningless digits in the output. On the other hand, if the native data type is float64, specifying
datatype=float32 will result in fewer bytes being transmitted, which may be useful for sending reduced
resolution data over a slow (or expensive) telemetry channel. The instrument's native data type is set at the
factory so that it is appropriate for the installed sensors, and can not be changed; see storage datatype. The
setting of outputformat datatype should match the native data type when shipped from the factory. Changing
outputformat datatype does not affect the resolution of data stored in memory.
For a deployment enabled in calibration mode (see enable storagemode=calibration), the outputformat
datatype reported will be calfloat64, regardless of what the instrument's native data type is. This uses IEEE
double precision floating point, but reports unprocessed values as a proportion of full scale in the nominal range
-1.0 to 1.0. This setting can not be made directly using the outputformat command; it is a result of the options
used with the enable command. This setting will persist only as long as such a deployment is active; when the
deployment finishes, the setting reported will revert to either float32 or float64, whichever was in force prior to
the calibration deployment.

All properties may be set independently from one another; they may be used singly or in combinations. Refer to the
examples below for usage and the impact on the streamed data output.

Examples

>> instrument outputformat
<< instrument outputformat sn=off schedulelabel=on datetime=on crc=off encoding=ascii
datatype=float32

These are the default settings that produce the default format.

>> instrument outputformat schedulelabel=off
<< instrument outputformat schedulelabel=off

Remove from the default format the schedule label, to simplify the output when only one schedule is used:

It it s recommended to set schedulelabel=on when multiple schedules are used for a deployment.

The binary option is provided only for compatibility with the command set of other instruments. The
encoding is always set to ascii, and attempting to change it will provoke an error message. The default setting
is ascii.

RBR#0014818revB 48

https://docs.rbr-global.com/display/L4DOC/.storage+v3
https://docs.rbr-global.com/display/L4DOC/.enable+v2
https://docs.rbr-global.com/display/L4DOC/.enable+v2

Format:
YYYY-MM-DD hh:mm:ss.ttt <value1> <value2> ... <valueN><CR><LF>

Three-channel logger example:
2024-06-10 11:24:14.125 38.6671142e+000 22.0217124e+000 1.95962418e+003<CR><LF>

>> instrument outputformat sn=on
<< instrument outputformat sn=on

Add to the default format the preamble that includes the serial number:

Format:
RBR <serial_number> <schedule_label> YYYY-MM-DD hh:mm:ss.ttt <value1> <value2> ... <valueN><CR><LF>

Three-channel logger example:
RBR 142152 sch_fast_CTD 2024-06-10 11:24:14.125 38.6671142e+000 22.0217124e+000
1.95962418e+003<CR><LF>

>> instrument outputformat crc=on
<< instrument outputformat crc=on

Add to the default format the CRC, for applications where high confidence in output correctness is required:

Format:
<schedule_label> YYYY-MM-DD hh:mm:ss.ttt <value1> <value2> ... <valueN> <CRC><CR><LF>

Three-channel logger example:
sch_fast_CTD 2024-06-10 11:24:14.125 38.6671142e+000 22.0217124e+000 1.95962418e+003
0xB9D8<CR><LF>

3.3.3.3 power
Usage

>> instrument power [source]

>> instrument power internal [voltage | batterytype | capacity | used]

>> instrument power external [voltage | batterytype | capacity | used]

Security

Unsafe.

Description

Reports parameters or executes sub-commands relating to the logger's power sources as follows:

 source is a read-only parameter which responds with one of the following names:
 usb the logger is drawing power from the USB connection.
 internal the logger is drawing power from its internal battery.
 external the logger is drawing power from an external power source.

 internal is a sub-command used to access all the available parameters associated with the logger's internal
battery.

 external is a sub-command used to access all parameters associated with the logger's external power supply.

RBR#0014818revB 49

The source parameter can not be used together with sub-commands in a single instance of the command, and only one
sub-command at a time can be invoked. A sub-command must immediately follow the instrument power command.
Parameters of a sub-command must follow the sub-command. Here are some examples of valid and invalid commands;
invalid commands will provoke an error message:

 instrument power

 instrument power source

 instrument power external

 instrument power internal capacity

 instrument power source external

 instrument power external source

 instrument power internal external

 instrument power voltage internal

For more details on the sub-commands, refer to the specific internal and external option pages.

Examples

>> instrument power source
<< instrument power source=internal

>> instrument power internal
<< instrument power internal voltage=12.39 batterytype=nimh capacity=138.000e+003
used=93.170e+003

3.3.3.3.1 external
Usage

>> instrument power external [voltage | batterytype | capacity | used]

Security

Unsafe - parameters can not be changed if the instrument state is enabled.

Description

Allows various parameters associated with the external power supply to be reported or set.

 voltage is a read-only parameter giving a live measurement of the voltage detected by the logger at its external
supply input connection.

 batterytype [=<batterytype>], has a value corresponding to a description of the various battery types
supported; see the list below. The RBRfermata, RBRfermette and RBRfermette3 battery packs are provided by
RBR Ltd; for any other type of external power source, other should be used.
The batterytype can not be changed while a deployment is in progress. If proper estimates are required for
battery capacity used and deployment life available, it is very important that the selected batterytype value
matches the power source actually in use.
Currently supported battery types are:

 fermata_lisocl2 (Li-SOCl₂-equipped RBRfermata)
 fermata_znmno2 (Zn-MnO₂-equipped RBRfermata)
 fermette_limno2 (Li-MnO₂-equipped RBRfermette)
 fermette3_lisocl2 (Li-SOCl₂-equipped RBRfermette3)
 fermette3_lifes2 (Li-FeS₂-equipped RBRfermette3)
 fermette3_znmno2 (Zn-MnO₂-equipped RBRfermette3)

RBR#0014818revB 50

 fermette3_linimnco (Li-NiMnCo-equipped RBRfermette3)
 fermette3_nimh (NiMH-equipped RBRfermette3)
 fermata_nimh (NiMH-equipped RBRfermata)
 other
 none

 capacity is a read-only parameter which reports the total nominal energy capacity (in Joules) of the external
battery pack. It can not be changed directly, but changes according to the selected batterytype. The capacity
value for the power source types other and none is currently zero, but energy used from these sources can still
be tracked.

 used [=0] reports the accumulated energy used from the external power source since the value was last reset.
The value continues to be updated even if it exceeds the nominal capacity. If a fresh battery pack is installed the
value can be reset to zero; this is the only accepted value for updating the parameter.

Examples

>> instrument power external
<< instrument power external voltage=14.21 batterytype=fermata_lisocl2
capacity=22.000e+006 used=100.100e+003

>> instrument power external used=0
<< instrument power external used=0.000e+000

>> instrument power external batterytype=fermata_lisocl2
<< instrument power external batterytype=fermata_lisocl2

3.3.3.3.2 internal
Usage

>> instrument power internal [voltage | batterytype | capacity | used]

Security

Unsafe - parameters can not be changed if the instrument state is enabled.

Description

Allows various parameters associated with the internal battery to be reported or set.

 voltage is a read-only parameter giving a live measurement of the voltage detected by the logger at the internal
battery terminals.

 batterytype [=<batterytype>], has a value corresponding to a chemical description of the various battery types
supported; see the list below. The special name none indicates that no battery considered to be internal to the
logger is present, and it will run exclusively from an external power source.
The batterytype can not be changed while a deployment is in progress. If proper estimates are required for
battery capacity used and deployment life available, it is very important that the selected batterytype value
matches the batteries actually in use.
Currently supported battery types are:

 lisocl2 (Li-SOCl₂)
 lifes2 (Li-FeS₂)
 znmno2 (Zn-MnO₂)
 linimnco (Li-NiMnCo)

RBR#0014818revB 51

 nimh (NiMH)
 other
 none

 capacity is a read-only parameter which reports the total nominal energy capacity (in Joules) of the internal
battery selected. It can not be changed directly, but changes according to the batterytype. The capacity value
for the power source types other and none is currently zero, but energy used from these sources can still be
tracked.

 used [=0], reports the accumulated energy used from the internal battery since the value was last reset. The
value continues to be updated even if it exceeds the nominal capacity. When fresh batteries are installed the
value can be reset to zero; this is the only accepted value for updating the parameter.

Examples

>> instrument power internal
<< instrument power internal voltage=6.52 batterytype=nimh capacity=138.000e+003
used=100.100e+003

>> instrument power internal used=0
<< instrument power internal used=0.000e+000

>> instrument power internal batterytype=lifes2
<< instrument power internal batterytype=lifes2

3.3.3.4 reboot
Usage

>> instrument reboot [delay=<milliseconds-delay>]

Security

Open

Description

This command executes a logger CPU reset. The reset will apply only to the CPU itself and any hardware directly under
its control; there is no guarantee that every component in the logger system will be reset in the same way that cycling
power to the logger would achieve.

Whether or not there is a response to the command depends on the confirmation setting: if confirmation is off there
will be no response - see the examples below. The confirmation setting is controlled by the settings command.

The delay option can be useful when using the command over a USB-CDC communication link. A <milliseconds-delay>
value must be supplied if the option is used; there is no default value. When the logger CPU resets, any USB-CDC link
between it and the host will be torn down and then re-established, meaning that the virtual serial port associated with
the CDC profile temporarily disappears for a brief time. Not all communications software is able to cope with such an
event, so providing some time to disconnect the software from the logger before the port disappears allows the
operation to be performed gracefully.

This does not apply to a true Serial link, so there are no side effects if the logger is reset without specifying a delay.
The link command can be used to verify the type of communications link if there is any doubt.

RBR#0014818revB 52

Examples

% settings confirmation=on
>> instrument reboot
<< instrument reboot
% reboot ocurrs

Successfully resets the logger CPU following the confirmation of the request.

% settings confirmation=on
>> instrument reboot delay=5000
% ... 5-second delay...
<< instrument reboot delay=5000
% reboot ocurrs

Successfully resets the logger CPU following the requested delay. Confirmation of the request is sent if confirmation is
enabled, but of course if the purpose of the delay was to allow time to disconnect the logger, the message will not be
seen.

% settings confirmation=off
>> instrument reboot
% reboot occurs

Successfully resets the logger CPU without issuing a confirmation of the request.

3.3.4 pcba
Usage

>> pcba [count | list]

>> pcba <pcba_label> [sn | pn | fw | hw | address]

Security

Open.

Description

This command is used to access information regarding all the pcba instances configured within the instrument. Pcbas
represent physical circuit cards and provide information which helps when debuging is necessary. Pcba information is
read-only.

To access general information about all pcbas within an instrument the command can be sent without any arguments.
The parameters which will be returned are:

 count is the number of pcbas installed in the instrument.
 list reports a list of all the pcba labels. There is no particular significance to the order in which items are

reported, but for a given instrument the order is fixed. Labels in the list are separated by a pipe character (“|”),
with no spaces.

RBR#0014818revB 53

>> pcba
<< pcba count=3 list=1352460_00|0123456_00|6543210_00

To access information for a specific pcba, send the <pcba_label> as an argument to the pcba command. The
following parameters provide the basic information available for all pcbas. They are all read-only parameters.

 sn reports the serial number of the pcba
 pn reports the pcba’s part number
 fw reports the pcba’s current firmware version
 hw reports the hardware revision
 address reports the base address used to communicate with the pcba over the bus

>> pcba 0123456_00
<< pcba 0123456_00 sn=123456 pn=0123456revA fw=1.1.1 hw=A01 address=128

3.4 Deployments
An instrument can be enabled for one deployment at a time; as such, the instrument state is either enabled or
disabled, and the deployment state is one of gated, sampling, or paused if the instrument is enabled, or the
deployment state is inactive if the instrument is disabled. See also enable, disable, pause and resume.

Following is the state diagram for the instrument/deployment pair:

3.4.1 clock
Usage

>> clock [datetime | offsetfromutc]

Security

Unsafe.

Description

Retrieve or set the logger's current date and time. The clock can only be changed when the instrument is not logging or
streaming.

 datetime [=<YYYYMMDDhhmmss>], reports or sets the current date and time.
 offsetfromutc [=<+/-hh.hh>] is intended to record the local timezone used when the logger was deployed, as an

offset from Universal Coordinated Time (UTC). This can facilitate correct interpretation of the time information,
even if the downloaded data file is reviewed in a different time zone. The offset is specified in hours; fractional
hours are permitted to support time zones which require this, and the offset is always reported to two decimal
places. When specifying a value, any simple numeric format compatible with floating point representation may

RBR#0014818revB 54

be used; for example 11, +11, or 11.00 would all be accepted. Setting this parameter does not change the
logger's time as reported by the datetime parameter; it is intended simply as a record of the local time zone. Any
change made is persistent, and will be retained until changed again. By default the offsetfromutc +0.00
which represent UTC.

Examples

>> clock
<< clock datetime=20240401120000 offsetfromutc=+1.00

>> clock datetime=20240401120130
<< clock datetime=20240401120130

>> clock
<< clock datetime=20240401120130 offsetfromutc=+1.00

>> clock offsetfromutc=-4.00
<< clock offsetfromutc=-4.00

>> clock
<< clock datetime=20240401120130 offsetfromutc=-4.00

3.4.2 verify
Usage

>> verify config=<configuration_label> dataset=<dataset_label>

[storagemode=normal | calibration]

Security

Open.

Description

This command performs all the same deployment consistency checks which the enable command performs. It then
reports the same response which the enable command would produce, whether this is an updated instrument state, a
warning or an error message. It does not, however, actually enable the instrument for sampling.

In other words, it performs a "dry run" of the enable command to allow the programmed schedule parameters to be
verified.

The required parameters are as follows:

 config=<configuration_label> specifies the configuration which will define this deployment. The configuration
must be valid.

 dataset=<dataset_label> gives the deployment's dataset a user-specified label. The <dataset_label> must
satisfy all naming constraints.

The labels for all datasets existing in the logger's memory at any given time must be unique. A <dataset_label> may be
reused, but only if the associated dataset is deleted from memory first. The <dataset_label> can not be changed after
the enable command has been executed; if it is important, choose carefully.

RBR#0014818revB 55

There is also one optional parameter:

 storagemode=normal | calibration determines whether calibration equations will be applied to all channel
data (normal), or not (calibration). The setting applies only to the current deployment, and will default to
normal if not specified. When storagemode=calibration, all data values are stored as IEEE double precision
floating point numbers in the nominal range 0.0 to 1.0, regardless of what the normal storage format is.

If any of the deployment consistency checks fail, an error message is sent. The most severe error found causes
immediate failure of the command; a single attempt to verify the configuration will not detect multiple errors.

If successful, the command reports these parameters in its response:

 config=<configuration_label>, confirming the configuration that will be used for this deployment.
 state=<instrument_state> the instrument state which would be assumed by the instrument if the enable

command were issued. The actual state of the instrument does not change.
 dataset=<dataset_label>, confirming the label of the dataset for this deployment.
 storagemode=normal | calibration, confirming the data storage mode to be used.

The command may succeed, but have a warning to report; in such a case the warning code appears at the start of the
response. Refer to the examples below.

Examples

>> verify config=profiling dataset=test
<< verify config=profiling dataset=test storagemode=normal state=enabled

The programmed schedules are valid and the instrument would be enabled. The label test is a valid dataset label.

>> verify dataset=Trial_2 config=tides
<< verify config=tides dataset=DeepCove storagemode=normal state=enabled

The programmed schedules are valid and the instrument would be enabled. The label Trial_2 is a valid dataset label.

>> instrumemnt state
<< instrument state=enabled
>> verify dataset=DeepCove config=tides
<< WRN-408 instrument was already enabled

The instrument is already in an enabled state and using the same configuration as what is specified.

>> instrumemnt state
<< instrument state=enabled
>> verify dataset=ShallowCove config=tides
<< ERR-128 instrument was already enabled with different settings

The instrument is already in an enabled state using settings which do not match the input. The existing deployment will
continue on as it was. Attempting to enable using these parameters will provoke the same error.

RBR#0014818revB 56

3.4.3 enable
Usage

>> enable config=<configuration_label> dataset=<dataset_label>

[storagemode=normal | calibration]

Security

Open.

Description

Enables the logger to sample for a new deployment according to the specified configuration. The following parameters
are required:

 config=<configuration_label> specifies the configuration which will define this deployment. The configuration
must be valid.

 dataset=<dataset_label> gives the deployment's dataset a user-specified label. The <dataset_label> must
satisfy all naming constraints.

The labels for all datasets existing in the logger's memory at any given time must be unique. A <dataset_label> may be
reused, but only if the associated dataset is deleted from memory first. The <dataset_label> can not be changed after
the enable command has been executed; if it is important, choose carefully.

There is also one optional parameter:

 storagemode=normal | calibration determines whether calibration equations will be applied to all channel
data (normal), or not (calibration). The setting applies only to the current deployment, and will default to
normal if not specified. When storagemode=calibration, all data values are stored as IEEE double precision
floating point numbers in the nominal range 0.0 to 1.0, regardless of what the normal storage format is.

Although the enable command is always available, a number of checks are made before logging is actually enabled. If
any check fails, the logger is not enabled, and an error message is sent. The most severe error found causes immediate
failure of the command; a single attempt to enable the logger will not detect multiple errors. To determine in advance
whether the command should succeed, use the verify command to perform a dry run first.

If all required conditions are satisfied, the enable command may still fail in the event of a fault that prevents logging
from being enabled; this also will provoke an error message.

If successful, the command reports these parameters in its response:

 config=<configuration_label>, confirming the configuration that will be used for this deployment.
 state=<instrument_state> the state of the instrument; this <instrument_state> is also reported by the

instrument command.
 dataset=<dataset_label>, confirming the label of the dataset for this deployment.
 storagemode=normal | calibration, confirming the data storage mode to be used.

The command may succeed, but have a warning to report; in such a case, the warning code appears at the start of the
response. Refer to the examples below.
Examples

>> enable config=profiling dataset=test
<< enable config=profiling dataset=test storagemode=normal state=enabled

RBR#0014818revB 57

The programmed schedules are valid and the instrument has been enabled. The dataset has been assigned the user-
supplied label test.

>> enable dataset=Trial_2 config=tides
<< enable config=tides dataset=Trial_2 storagemode=normal state=enabled

The programmed schedules are valid and the instrument has been enabled. The dataset has been assigned the user-
supplied label Trial_2.

>> enable config=pH_cal dataset=d_pHcal_20240401 storagemode=calibration
<< enable config=pH_cal dataset=d_pHcal_20240401 storagemode=calibration state=enabled

The programmed schedules are valid and the instrument has been enabled; the calibration storagemode is being used
for calibration of a sensor. The dataset has been assigned the user-supplied label d_pHcal_20240401.

>> instrument state
<< instrument state=enabled
>> enable config=pH_cal dataset=d_pHcal_20240401 storagemode=calibration
<< WRN-408 instrument was already enabled

The instrument was already enabled with those exact settings. The deployment will continue on as it was.

>> instrument state
<< instrument state=enabled
>> enable config=pH_cal dataset=d_pHcal_20240401 storagemode=calibration
<< ERR-128 instrument was already enabled with different settings

The instrument was already enabled with settings which don’t match the input. The existing deployment will continue
on as it was. The new deployment will not be enabled.

3.4.4 disable
Usage

>> disable

Security

Open.

Description

If the instrument is logging, this command will terminate the current deployment. If the instrument is not logging when
the command is issued, it will respond with a warning message but takes no other action; its state does not change.
When successful, the command reports:

 state, the state of the instrument is always reported when the command is complete (see also the Instrument
command).

If the disable command is sent while a measurement is in progress, the measurement will be completed before logging
is stopped. Consequently, depending on the channels installed in the logger and the sampling mode, the instrument’s

RBR#0014818revB 58

response to the command may be delayed. If the instrument is sampling in any averaging or burst recording mode, the
burst currently in progress will be interrupted and abandoned.

If the instrument is recording data to memory, a “stop event” will be appended to the data after the last sample stored.
Examples

>> instrument
<< instrument state=enabled

>> disable
<< disable state=disabled

The instrument was enabled, and has now been disabled.

>> instrument
<< instrument state=disabled

>> disable
<< WRN-435 instrument state is already disabled

The instrument had previously been disabled; its status has not changed.

3.4.5 deployment
Usage

>> deployment [starttime | status | gate | simulation]

Security

Unsafe - modifications are not permitted while logging is enabled.

Description

Allows various parameters to be reported or set.

 starttime [=<YYYYMMDDhhmmss>], retrieve or set the start date and time of the next deployment. Available only
when gate=time

 status is a read-only parameter which returns the current state of the finite state machine for the instrument's
sampling function. Possible values are given below:

 sampling : deployment is active.
 gated : deployment is active but waiting for a gating condition to be met to start or resume sampling.
 paused : deployment is active but the pause command has been issued so sampling has been paused.
 inactive : deployment is inactive. The instrument state is disabled.

 gate=<gate_condition> retrieve or set a gating condition of the next deployment currently enabled. If a
deployment is currently active then the value is read-only.
A gate is an extra requirement that must be satisfied before sampling will occur. The following gating conditions
are presently defined:

 none: no gating conditions are enabled. The instrument will start sampling once enabled.
 time: the instrument will start sampling once its clock is after deployment starttime.

 simulation=on | off is a read only parameter indicating whether any of the instrument's channels are being
simulated (on) or whether they are all reporting true measured data (off). Refer also to the simulation command
for control of other parameters.

RBR#0014818revB 59

Examples

>> deployment
<< deployment starttime=20230104000000 status=inactive gate=time simulation=off

>> deployment starttime=20230104000000
<< deployment starttime=20230104000000

>> deployment status
<< deployment status=inactive

>> enable config=default_config dataset=dataset_01
<< enable config=default_config dataset=dataset_01 storagemode=normal state=enabled

>> deployment
<< deployment status=sampling gate=none simulation=off

3.4.6 pause
 Usage

>> pause

Security

Open.

Availability

v2.2.0

Description

This command pauses an enabled deployment.

If successful, the command reports its status:

 status, will be "paused".

The only error condition which would prevent the successful execution of the command is if the instrument had not
been enabled for deployment.

When a pause is issued, the following will happen:

 Streaming is immediately suspended if any schedule in the deployment was configured to do so.
 The current acquisition, if any, is terminated. For averages/tides, this means that the current sample will be

thrown away and not recorded in memory or streamed. For bursts/waves the burst will terminate before the
expected number of samples. In regimes mode, any open bin will be closed.

 An event of type EVENT_PAUSE (0x2B) is stored in the active dataset.
 No further acquisitions will be scheduled until a resume command is received.

RBR#0014818revB 60

Examples

>> pause
<< pause status=paused

Deployment is now paused and no more samples will be taken once the current acquisition, if any, finishes.

>> pause
<< ERR-406 cannot 'pause' while not logging

Cannot pause deployment if the instrument has not been enabled.

3.4.7 resume
Usage

>> resume

Security

Open.

Availability

v2.2.0

Description

This command resumes an enabled deployment which was previously paused using the pause command.

If successful, the command reports its status:

 status, will be one of the values:
 sampling
 gated

The only error conditions which would prevent the successful execution of the command are if the instrument has not
be enabled for deployment, or was not previously paused.

When a resume is issued, the following will happen:

1. Streaming is immediately activated if any schedule in the deployment was configured to do so.
2. The next acquisition is scheduled for the appropriate time; in the case of average/burst/wave/tide, the next time

will be aligned to the interval time.
3. An event of type EVENT_RESUME (0x2A) is stored in the active dataset.
4. Acquisitions will continue to be scheduled at normal intervals.

Examples

>> resume
<< resume status=gated

Deployment has resumed running as scheduled and is currently waiting on a gating condition.

RBR#0014818revB 61

>> resume
<< resume status=sampling

Deployment has resumed running as scheduled.

>> resume
<< ERR-407 cannot 'resume' unless paused

Cannot resume a deployment unless the instrument has already been enabled and then paused.

3.4.8 simulation
Usage

>> simulation [state | period | channellist]

Security

Unsafe.

Description

This command controls how the simulation mode will operate, if used. It is an Unsafe command, and as such can not
be modified while the instrument is enabled. It takes as parameters:

 state=on | off determines whether the channels specified in the channellist option will be simulated (on), or
report true measured data (off). The default setting as shipped from the Factory is off. When changed, the
setting is persistent; it will remain in force from one deployment to the next.

 period [=<milliseconds>] is the period in milliseconds of one full cycle of simulated values. The default value is
3600000ms, corresponding to 1 hour.

 channellist [=<list_of_channel_labels>] specifies which channels will be simulated. Each channel is specified by
its label, and channel labels in the list are separated by a pipe character ('|') with no spaces. The order in which
channels are specified does not matter.
Derived channels can not be simulated; only measured channels may be selected. Derived channels are
calculated as usual, whether the underlying measured channels are simulated or not. As shipped from the
Factory all measured channels are selected by default.
There are two reserved keywords that may be used in place of a <list_of_channel_labels>; all selects all
measured channels for simulation, while none can be used to disable simulation for all channels.

During a deployment, the active simulation state can be requested using the command deployment simulation.

When simulation is enabled, the measured values from the selected channels are replaced by artificially generated
values. These values follow an approximately linear ramp which travels up and down between predefined limits, taking
period=<milliseconds> to complete one full cycle. All simulated channels cycle at the same rate. The channel types
supported and the limits which apply are listed below.

An obvious danger of using the persistent setting state=on is that it would be possible to inadvertently enable
an instrument for a real deployment with one or more channels simulated instead of measuring real data, so
use this option with care.

RBR#0014818revB 62

Channel type Minimum Maximum Units

temperature -5 +35 °C

pressure +10 +2000 1 dbar

conductivity -1 +85 mS / cm

PAR -25 +2500 µmol / m2 / s

turbidity -25 +2500 NTU

chlorophyll -2 +150 µg / L

O2 concentration 0 +450 µM

All other types 25% full scale 75% full scale as appropriate

1If a pressure channel's calibration coefficients indicate that 2000dbar is beyond the measurement range, a limit
corresponding to the sensor's maximum output will be used instead.

The simulated values are used both for scheduled samples (whether stored in memory, streamed, or both) and for on-
demand samples obtained using the poll command. Both types of sample should conform closely to the same linear
ramp; if scheduled and on-demand samples are required simultaneously, there may be some small deviations due to
the computation's attempts to satisfy both.

Examples

>> simulation
<< simulation state=off period=600000 channellist=conductivity_00|temperature_00|
pressure_00

>> simulation period=3600000
<< simulation period=3600000

>> simulation channellist=conductivity_00|temperature_00|pressure_00|chlorophyll_00
<< simulation channellist=conductivity_00|temperature_00|pressure_00|chlorophyll_00

>> simulation state=on
<< simulation state=on

3.5 Memory and datasets
These commands provide information about the memory in which deployment data is stored, permit access to that
data for retrieval, and allow the memory to be cleared.

RBR#0014818revB 63

https://docs.rbr-global.com/display/L4DOC/.poll+v2

3.5.1 dataset
Usage

>> dataset [count | maxcount | list]

>> dataset <dataset_label> [status | schedulelist | bytecount | datatype]

>> dataset <dataset_label>/[<schedule_label>/]<block>

>> dataset delete <dataset_label> | all

Security

Open.

Description

This command is used to access information regarding all of the datasets stored in the instrument. Datasets contain a
list of schedules to be run in a deployment. The configuration is specified at the time of enabling the instrument. A
dataset is created automatically when the instrument is enabled. Datasets cannot be modified but they can be deleted.

To access general information about all of the datasets stored within the instrument use the dataset command
without any arguments. The following list of parameters will be returned:

 count reports the number of datasets currently stored in the instrument's memory.
 maxcount reports the maximum number of datasets that the instrument can store in its memory.
 list reports a list of the labels assigned to the datasets; the labels are separated by a pipe character ('|'), with no

spaces. Labels are reported in the order that the datasets were created, earliest first.

>> dataset
<< dataset count=3 maxcount=20 list=DeepCove|GullCove_sep22|GullCove_oct22

If there are no datasets stored in the instrument the following response will be observed.

>> dataset
<< dataset count=0 maxcount=20 list=none

To access parameters for a specific dataset, provide the <dataset_label> as an argument to the dataset
command. The following parameters are available for a given dataset:

 status reports one of two values:
 open, if the dataset is for a deployment currently in progress, or
 closed, for a historical dataset in memory which is no longer being updated because its deployment has

stopped.
 schedulelist reports a list of the schedules executed during the deployment associated with the specified

dataset; these labels will identify the retrievable sample storage objects. It is important to realize that after a
deployment has finished, schedules may be edited, renamed or deleted; this option reports the schedules as
they were when the specified dataset was started, not as they are presently defined in the logger.

 bytecount reports the total amount of memory used by this dataset, in bytes. For more detailed information
about how this total is broken down, use the second form of the command.

 datatype reports the numerical format used for data storage in this dataset; one of float32, float64 or
calfloat64; see also the storage and enable commands.

RBR#0014818revB 64

>> dataset DeepCove
<< dataset DeepCove status=closed schedulelist=tides_schedule|DO_schedule
bytecount=3749498 datatype=float32

The second form of the command reports read-only information about the specified dataset's usage of memory. It can
be used to find out how much memory is used for sample data, events or metadata, either for the whole dataset or on a
per-schedule basis. The general form of the command is:

>> dataset <dataset_label>[/<schedule_label>][/<block>]
<< dataset <dataset_label>[/<schedule_label>][/<block>] bytecount=<block_bytes>
<count_key>=<count_value>...

 <dataset_label> is always required, and identifies the dataset of interest, For a list of available datasets, use
dataset list.

 <schedule_label> is optional, although at least one of <schedule_label> or <block> must be provided. If
<schedule_label> is given, the reported information applies to the named schedule only. If <schedule_label> is
omitted, the reported information is the sum for all schedules in the dataset. For a list of available schedules,
use datasets <dataset_label> schedulelist.

 <block> is optional, although at least one of <schedule_label> or <block> must be provided. If <block> is given, it
must be one of the three keywords data, events, or meta; it determines the type of information retrieved for the
specified schedule. If <block> is omitted, all three types of information will be reported.

 data, to report memory usage for sample data.
 events, to report memory usage for events.
 meta, to report this schedule's memory usage for metadata.

When reporting about events or meta, a <schedule_label> should not be specified; these types of data can not be
retrieved on a per-schedule basis, only for the entire deployment. Use one of <dataset_label>/events or
<dataset_label>/meta.

It is important to understand that the '/' character is not just a separator; although it marks the boundaries between
components, it also combines them into a single parameter. ensuring that they appear in the correct order with no
other parameters in between.

The elements in the response to the command are as follows:

 bytecount = <block_bytes> is always reported, and gives the size in bytes of the requested block (data / events /
meta).

 <count_key> = <count_value> is specific to the requested block, and gives the size in more 'natural' units than
bytes:

 for data, the form is samplecount = <number_of_samples>.
 for events, the form is eventcount = <number_of_events>.
 For metadata, there is no underlying 'natural' measure of size, so only the bytecount is reported.

>> dataset DeepCove/DO_schedule
<< dataset DeepCove/DO_schedule bytecount=3501264 samplecount=291106 eventcount=498

>> dataset DeepCove/DO_schedule/data
<< dataset DeepCove/DO_schedule/data bytecount=3493272 samplecount=291106

RBR#0014818revB 65

3.5.1.1 delete
Usage

>> dataset delete <dataset_label> | all

Security

Open.

Description

Datasets can be deleted using the delete action within the dataset command. A <dataset_label> must be
specified as an argument to the action. Only a single dataset can be deleted at a time. The only exception to that is
when the all argument is provided as the <dataset_label> . This will cause all datasets to be deleted.

>> dataset
<< dataset count=3 maxcount=20 list=DeepCove|GullCove_sep22|GullCove_oct22

>> dataset delete DeepCove
<< dataset delete DeepCove

>> dataset
<< dataset count=2 maxcount=20 list=GullCove_sep22|GullCove_oct22

>> dataset delete all
<< dataset delete all

>> dataset
<< dataset count=0 maxcount=20 list=none

3.5.2 download
Usage

>> download <dataset_label>/<schedule_label>/<block> <count_key>=<count_value>

<start_key>=<start_offset>

Security

Open.

Description

Reads all or part of a specified storage object. For the initial use of the download command, all parameters are
required. When retrieving large amounts of information in 'blocks' using multiple instances of the command,
parameters can be optional; this is discussed following the description of the parameters below.

 <dataset_label>/<schedule_label>/<block> specifies the storage object to be retrieved. The specifier has three
components:

 <dataset_label> identifies the complete dataset corresponding to the deployment of interest, For a list of
available datasets, use dataset list.

 <schedule_label> identifies the sampling schedule used to acquire the data. For a list of available
schedules, use dataset <dataset_label> schedulelist.

RBR#0014818revB 66

 <block> is one of the three keywords data, events, or meta, and determines the type of data retrieved for
the specified schedule.

It is important to understand that the “/” character is not just a separator; although it marks the boundaries between
specification components, it also combines them into a single parameter. ensuring that they appear in the correct order
with no other parameters in between.

When a source is specified, the <dataset_label> and <block> are required components; the instrument must know which
dataset to read and what type of information is required. When retrieving a <block> of sample data, a <schedule_label>
is also required; it is not possible to download sample data from multiple schedules with a single instance of the
command.

When retrieving events or meta, a <schedule_label> should not be specified; these types of data can not be retrieved on
a per-schedule basis, only for the entire deployment. Use one of <dataset_label>/events or <dataset_label>/meta.

 <count_key> = <count_value> specifies the quantity of information that the instrument should attempt to
retrieve and report. As well as introducing the <count_value>, the <count_key> also determines the 'units' in
which the information will be measured:

 The bytecount <count_key> indicates that the information is measured in bytes; this option is available
for all three block types, data, events, and meta.

 The samplecount <count_key> can be used only with the data block type, and indicates that the
information is measured in samples.

 The eventcount <count_key> can be used only with the events block type, and indicates that the
information is measured in events.

Any transfer from a given storage object that uses multiple download commands must all use the same
measurement units.

 <start_key>=<start_offset> specifies an offset from the beginning of the storage object where reading should
begin. It must be specified in the same units used for the <count_key>; one of bytes, samples, or events:

 bytestart indicates that the starting point is specified in bytes.
 samplestart indicates that the starting point is specified in samples.
 eventstart indicates that the starting point is specified in events.

The first item stored in memory for this deployment always has <start_key>=0.

In all cases, if the requested amount of data would overrun the boundary of the target object, a valid transfer still
occurs, but the amount of data actually returned will be less than the request. This is reflected in the instrument's
response to the command.

The instrument responds with all parameter values it intends to use with this instance of the command. As with most
commands, this response is terminated by a <carriage_return><line_feed> pair of characters. For example:

>> download <dataset_label>/<schedule_label>/data samplecount=<requested_sample_count>,
samplestart=<start_sample_offset>
<< download <dataset_label>/<schedule_label>/data bytecount = <expected_byte_count>,
samplecount=<expected_sample_count>, samplestart=<start_sample_offset>

The requested data then follows immediately, in binary format as it is stored in the instrument. Any multi-byte
quantities are stored and transmitted least-significant-byte first.

Note that the count measurements reported in the response depend in part on how the retrieval was specified.

 bytecount is a valid <count_key> for all three <block> types specified in the source, namely data, events, and
meta. It is always reported in the response, and will always accurately reflect the number of bytes the
instrument is attempting to return. This assists the host in knowing exactly how much data to expect, even if the
count was specified in samples or events. Note that the 2-byte CRC appended to the transfer is NOT included in

RBR#0014818revB 67

this count; the count indicates the quantity of information being returned from the logger’s memory, and does
not take into account the transfer protocol used.

 samplecount is a valid <count_key> only for <block> type data. It will be reported in the response only if
specified in the command. For <block> types events and meta a samplecount is not valid and is never reported.

 eventcount is a valid <count_key> only for <block> type events. It will be reported in the response only if
specified in the command. For <block> types data and meta an eventcount is not valid and is never reported.

If data or events are requested using bytecount, the instrument can not guarantee that this will correspond to a whole
number of objects (samples or events). If that is a requirement, use samplecount or eventcount instead; the
bytecount reported in the response will then be accurate for the requested number of objects.

At the end of the data the instrument appends a CRC (cyclic redundancy check). This is a 16-bit CRC using the CCITT
polynomial f(x)=x^16 + x^12 + x^5 + 1, feeding bytes into the generator LSB first and using 0xFFFF as a seed value. The
bytes of the CRC computed by the instrument are swapped before appending to the data; this means that the host can
include them in its CRC-check as an extra two bytes, and if the CRC is correct this always gives a result of zero. These
two bytes are not included in the bytecount reported in the command’s response.

Examples

>> download dataset_00/sched_CTD/data bytecount=32000 bytestart=0
<< download dataset_00/sched_CTD/data bytecount=32000 bytestart=0
<< <32000 bytes of sample data from the start of the specified schedule><CRC>

 % The 1st part of a transfer of sample data from the schedule labelled sched_CTD,
starting with the first byte.

>> download dataset_00/meta bytecount=64000 bytestart=0
<< download dataset_00/meta bytecount=13584 bytestart=0
<< <13584 bytes of metadata associated with the entire dataset><CRC>
 % A new request for all the metadata associated with the dataset. Again the number
of bytes available is less than the requested number. The <schedule_label> portion of
the source specification has been omitted, so metadata for all schedules as well as the
whole instrument are included.

Using multiple instances of the command

When retrieving a large amount of information from the instrument, for the purpose of managing potential
communications errors it is advisable to break the transfer into smaller amounts using multiple instances of
the download command.
Transfers specified in bytes always use the byte values for these substitutions and calculations, regardless of
whether they represent whole numbers of objects. For transfers specified in samples or events the
correspondence between whole numbers of objects and bytes is exact.

RBR#0014818revB 68

>> download dataset_00/sched_CTD/data samplecount=2000 samplestart=0
<< download dataset_00/sched_CTD/data bytecount=56000 samplecount=2000 samplestart=0
<< <The first 2000 samples from the start of the specified schedule><CRC>
 % Here is an alternative start to the transfer of sample data, this time using
samples as the measurement unit.

3.5.3 storage
Usage

>> storage [used | remaining | size]

Security

Open.

Description

Reports basic information about the total usage of the data memory. All parameters are read-only:

 used is the total number of bytes actually used to store information for all datasets in the memory.
 remaining is the number of bytes still available for storage.
 size is the maximum total size of the memory in bytes.

For further information about the storage used by each dataset, refer to the dataset command.

Some additional notes:

 It is sometimes not true that (used + remaining)=size; this is normal. The inherent nature of the physical
devices used means that memory must be "allocated" for a particular purpose in blocks that are much larger
than the typical sample size. Once such a block has been allocated for one purpose, it can not be used for
another, so if some of the block remains unused for its original purpose, it is no longer available.

 The value of size is not always exactly the same for all instruments. Some physical devices may have a small
percentage of their capacity marked as "bad" by the device manufacturer. These areas are never used for
information storage, so there is no risk to the user's stored data. The only impact is a slight reduction in usable
memory from the nominal capacity.

 When access=usbhost the instrument will not allow dataset downloads through the API. Downloads must be
done using the mass storage utility on the host OS.

Examples

>> storage
<< storage used=1528 remaining=134216192 size=134217728 access=instrument

3.6 Configuration information and calibration

3.6.1 channel
Usage

>> channel [count | list]

RBR#0014818revB 69

https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13828279&linkCreation=true&spaceKey=GEN4CR&title=dataset+%28obsolete%29

>> channel <channel_label> [type | address | settlingtime | readtime | guardtime

| equation | userunits | gain | availablegains | derived | grouplist | sensor]

Security

Unsafe - parameters may not be modified while logging is enabled.

Description

The channels command is used to access information about the channel with the specified <channel_label>. Channels
are identified by their factory-assigned label, a meaningful string such as temperature_00 or conductivity_00. There are
two keys available at the root of the command:

 count is the number of channels configured on an instrument
 list reports a list of all the channel labels. There is no particular significance to the order in which channels are

reported, but for a given instrument the order is fixed. Labels in the list are separated by a pipe character (“|”),
with no spaces.

To access information for a specific channel send the <channel_label> as an argument to the channels command. The
following parameters give the basic information available for all channels. They are all read-only parameters.

 type is a short, pre-defined 'generic' name for the installed channel.
 address is the internal address to which this channel responds; it is normally of no interest to end users.
 settlingtime is the minimum power-on settling delay in milliseconds required by this channel, taking into

account both the sensor and the interface electronics.
 readtime is the typical data acquisition time in milliseconds required by this channel, again taking into account

both the sensor and the interface electronics. It applies in a specific situation, namely when the sensor power is
turned on, the reading acquired, and then the power is turned off again. In particular, it may not apply in fast
sampling modes, when a channel's behaviour may adapt to the need for a higher sample rate.
Most channels have a fixed, pre-determined readtime, but for some it may be variable. An example would be a
channel which supports, and is configured to use, the auto-ranging feature: the readtime is longer when the
channel is in auto-ranging mode than when operated in a fixed-gain mode. The logger adjusts the reported value
of the readtime to reflect the operating mode and status of the channel.

 guardtime is the minimum time in milliseconds for which the power must remain off once the channel has been
powered down. The logger will not turn the channel back on again until this delay has expired.

 equation is the type of formula used to convert raw data readings to physical measurement units. The values for
the core equations are shown below as examples; see the section Calibration Equations and Cross-channel
Dependencies for details of all supported equations.

 tmp temperature
 lin linear
 qad quadratic polynomial
 cub cubic polynomial

 userunits is a short text string giving the units in which processed data is normally reported from the logger; for
example C for Celsius, V for Volts, dbar for decibars, etc. Presently this is a factory-set field representing the
fundamental units in which the channel is calibrated.

 factoryunits is a short text string giving the units in which processed data is normally reported from the logger;
for example C for Celsius, V for Volts, dbar for decibars, etc. Presently this is a factory-set field representing the
fundamental units in which the channel is calibrated.

 derived is a flag which is either on or off to indicate whether the channel is a derived channel (on) or a
measured channel (off). This is an intrinsic property of the channel type, and can not be modified: it is for
information only.

RBR#0014818revB 70

 grouplist reports a list of all the groups that this channel belongs to. The list consists of group labels
separated by a vertical bar ('|') character. Users can not directly modify the list using the channel command;
channels are added to or removed from a group using the group command.

 gain reports the gain setting currently in use by the channel. In addition to one of the fixed values from the list
reported by the availablegains option, the response may indicate auto for auto-ranging. In this mode the
channel will select the most appropriate gain setting depending on the value of the parameter being measured.
Again, if the channel does not support multiple gain settings, the response is none.
The gain option may also be used to set the gain used. For a fixed gain setting, the value supplied must be from
the list reported by the availablegains option. For auto-ranging, use the word auto. Although they are typically
whole numbers, gains are reported in a floating point format, and may be specified as such, as long as the value
appears in the list of available gains.

 availablegains reports the gain settings supported by the sensor at channel <channel_label>. The settings are
given as a list of numerical values in order of increasing gain, with a vertical bar character '|' separating the
values. If the channel does not support multiple gain settings, the response is none.

 sensor reports the <sensor_label> for a sensor with which the channel is associated. See the sensor command
for more details.

Examples

>> channel
<< channel count=6 list=conductivity_00|temperature_00|pressure_00|backscatter_00|
chlorophyll_00|fdom_00

>> channel conductivity_00
<< channel conductivity_00 type=cond00 address=32 settlingtime=50 readtime=260
guardtime=20 userunits=mS/cm derived=off grouplist=none sensor=none

3.6.2 calibration
Usage

>> calibration <channel_label> [equation | datetime | offset | slope | c0 ... cN

| x0 ... xN | n0 ... nN]

Security

Unsafe.

Description

Reports or sets information regarding the most recent calibration for the channel specified by <channel_label>, which is
a required parameter in all cases (see channel). Calibrations cannot be created or deleted. They are tightly coupled to
the channels for which they apply and as such the associated <channel_label> must be specified to access them. The
number and types of coefficients reported, or required when setting, will vary depending on the channel type (see
channel).

The derived parameter is only present in L3.5 and is deprecated. It shall not be used for future backward
compatibility.

The availablegains and gain parameters are only available for channel types which support sensors having
variable gain, or multiple ranges. Presently these include sensors from Seapoint, and the Cyclops series from
Turner Designs, which can measure turbidity, fluorescence, and various other optical properties.

RBR#0014818revB 71

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828519
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828201
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828201

Some sensor types have complicated equations with many coefficients, and the equation may also use the output of
one or more of the other channels in the logger for correction or compensation purposes. This is a powerful facility, but
requires a lot of information; the calibration command helps to manage that information.
Coefficients are arranged in three groups, c0…, x0…, and there is a further group n0… of cross-channel reference
labels. The purpose and function of each group will be described below. The groups may also be referred to by name;
c, x, or n.

All parameters might be obtained by issuing the command without providing any specific parameter names.
Parameters may also be requested individually, or in any combination, by name. Coefficients in each group may be
requested all together by using one of the group names, c, x or n. Requesting an item which does not exist (eg. c3 for a
linear sensor) may result in either an error message, or a response such as c3=na.

When setting parameters, there are further restrictions which must be followed:

 The equation and n… coefficients are read only.
 datetime=<YYYYMMDDhhmmss> may accompany any changes to coefficient values, so that the reported date

and time reflects the most recent change. If it is not provided when modifying coefficients, the parameter is
updated with the current date and time (see the clock command).

Descriptions of the individual parameters are given below.

 equation is the type of formula used to convert raw data readings to physical measurement units. The values for
the core equations are shown below as examples; see the section Calibration Equations and Cross-channel
Dependencies for details of all supported equations.

 tmp temperature
 lin linear
 qad quadratic polynomial
 cub cubic polynomial

 datetime is reported and set using a <YYYYMMDDhhmmss> format. It is the date and time of the most recent
calibration change for the channel.

 c0, c1… are the primary coefficient values, reported as floating point numbers using a format with a mantissa
and exponent; for example 3.3910000e+003. When setting coefficients, any simple format compatible with
floating point representation may be used; for example 11, 11.000 or 1.10e+1 would all be accepted.
These coefficients apply to a "core" equation which yields a basic value for the parameter. In many cases this is
all that is needed, and the x and n groups are not required. The exact function of each coefficient depends on the
equation used.
x0, x1… are required and reported for only some equation types, namely those which employ cross-channel
compensation or correction of the primary value using one or more inputs from other channels in the logger. x0,
x1… are also coefficient values which follow the same rules as the c group. The exact function of each coefficient
depends on the equation used.

 n0, n1… apply only to some equation types, those using cross-channel compensation or correction. They are
only ever reported; they are set at the factory and can not be changed. They are not coefficients, but (in general)
the labels of other logger channels whose data are also inputs to the equation for channel <channel_label>. This
permits output data to depend on more than one channel; for example, to be corrected for temperature
dependencies.
Most equations which use the x0, x1… coefficients will require at least one "n" entry. The logger may also have
'derived parameter' channels, which have no measurement channel of their own, but an output value which is
computed from other measured channels: a good example would be salinity, which is a function of conductivity,
temperature and pressure. In such cases n0, n1, n2 are required to tell the logger which input channels to use.
There is one special case when the value of an "n" label may be the text field "value". This can be set only at the
factory, and applies when an equation requires a correction term using a parameter which the logger does not
measure. In this case the default parameter set by the command parameters will be used.

 offset, slope are provided to permit users to apply a simple linear adjustment to the final value. They are not
part of the instrument's official calibration, and RBR Ltd. keeps no record of their values. They can be used, for
example, to give a rough correction in the field when a proper re-calibration is not possible. Using these

RBR#0014818revB 72

parameters as a permanent calibration correction is not recommended; many sensors have a non-linear
response, or depend also on values from other channels. If a sensor requires recalibration, it should be returned
to RBR Ltd for proper handling.

Please refer to the section Calibration Equations and Cross-channel Dependencies for a complete list of the equations
which the logger uses, and for further discussion of cross channel dependencies.

Examples

>> calibration voltage_01
<< calibration voltage_01 equation=lin datetime=20171218175005 offset=0.0000000e+000
slope=1.0000000e+000 c0=9.9876543e+000 c1=7.5642301e+000

Queries the calibration for a single channel with the label voltage_01.

>> calibration voltage_01 c0
<< calibration voltage_02 c0=9.9873456e+000

Queries a single parameter for the calibration of a single channel.

>> calibration voltage_00 datetime=20171203134201 c0=9.9873456 c1=7.564
<< calibration voltage_00 datetime=20171203134201 c0=9.9873456e+000 c1=7.5640000e+000

Setting the calibration for a channel.

3.6.3 sensor
Usage

>> sensor [count | list]

>> sensor <sensor_label> [sn | pn | fw | hw | channellist]

 Security

Open.

Description

A command which returns general sensor information for the instrument.

To access general information about all sensors within an instrument the command can be sent without any
arguments. The parameters which will be returned are:

 count is the number of sensors installed in the instrument.
 list reports a list of all the sensor labels. There is no particular significance to the order in which sensors are

reported, but for a given instrument the order is fixed. Labels in the list are separated by a pipe character ('|'),
with no spaces.

Parameters are not directly modifiable; they summarize the results of other operations.

>> sensor
<< sensor count=3 list=0123456_00|9876543_00|5678901_00

RBR#0014818revB 73

To access information for a specific sensor send the <sensor_label> as an argument to the sensor command. The
following parameters give the basic information available for all sensors. They are all read-only parameters.

 sn represents the serial number for the specified sensor.
 pn represents the RBR part number for the specified sensor.
 fw reports the sensor’s current firmware version
 hw reports the hardware revision of the sensor
 channellist [= <channel_label_list ...>] reports a list of logger channels that are associated with this

sensor. Labels in the list are separated by a pipe character ('|'), with no spaces.

>> sensor 0123456_00
<< sensor 0123456_00 sn=012345 pn=na fw=na hw=na channellist=conductivity_00|
temperature_00

3.6.4 group
Usage

>> group [count | maxcount | list]

>> group <group_label> [channellist | schedulelist]

>> group create <group_label>

>> group delete <group_label> | all

Security

Open.

Description

This command is used to access information regarding all the channel groups configured within the instrument.
Channel groups link instrument channels into a functional group for purpose of sampling. Groups can be created,
deleted, accessed, and modified, however, they cannot be renamed. If renaming is required it is recommended to
delete the group and create a new group with the appropriate label.

To access meta information about all groups which exist in the instrument, the group command can be used without
any arguments. The instrument will respond with the following parameters:

 count - reports the number of groups currently defined.
 maxcount - reports the maximum number of groups that the instrument can hold in its pool at any given time.
 list - reports a list of all the defined group labels; labels in the list are separated by a pipe character (“|”), with no

spaces. Labels are reported in the order that the groups were created, earliest first.

>> group
<< group count=3 maxcount=16 list=g.ctd|g.optical|g.chemical

Derived channels will not appear in the channellist. Derived channels are not associated with a particular
sensor because in most cases they depend on multiple sensors.

RBR#0014818revB 74

To access parameters for a specific group, provide the <group_label> as an argument to the group command.
The following parameters are available for a given group:

 channellist reports a list of logger channels that are included in this group. Labels in the list must be separated
by a pipe character (“|”), with no spaces. The list must specify at least one channel for the group to be valid.
Specifying the keyword none, by itself, in place of a list of channel labels, will clear the channel list for the group.

 schedulelist is a read-only parameter that reports a list of all the schedules currently in the pool which use this
group. Any group usage for historical datasets stored in the logger's memory is not included. Labels in the list
are separated by a pipe character (“|”), with no spaces. If the group is unused by any schedules, this list is
replaced by the word none.

>> group salinity_grp
<< group salinity_grp channellist=conductivity_00 schedulelist=none

If only a single parameter is needed, it can be requested by providing the key for that parameter as an argument to the
group specified by the <group_label> .

>> group salinity_grp schedulelist
<< group salinity_grp schedulelist=none

>> group salinity_grp channellist
<< group salinity_grp channellist=conductivity_00

Modifications can only be performed on a single group at a time. To perform a modification, provide the
<group_label> as an argument to the group command then provide the key/value pairing for the value to be

changed. There is only one available key which can be modified and it is:

 channellist [=<channel_label_list ...>] sets a list of logger channels that are included in this group. Labels in the
list must be separated by a pipe character (“|”), with no spaces. The list must specify at least one channel for the
group to be valid. Specifying the keyword none, by itself, in place of a list of channel labels, will clear the channel
list for the group.

>> group salinity_grp channellist=conductivity_00|temperature_00|pressure_00
<< group salinity_grp channellist=conductivity_00|temperature_00|pressure_00

>> group salinity_grp channellist=salinity_00|conductivity_00|temperature_00|
pressure_00|temperature_01
<< group salinity_grp channellist=salinity_00|conductivity_00|temperature_00|
pressure_00|temperature_01

3.6.4.1 create
Usage

>> group create <group_label>

Security

Unsafe - groups may not be created while logging is enabled.

RBR#0014818revB 75

Description

Groups can be created the create action within the group command. The group label must be specified as an argument
to the action.

>> group create g.pressure
<< group create g.pressure

>> group
<< group count=4 maxcount=16 list=g.ctd|g.optical|g.chemical|g.pressure

3.6.4.2 delete
Usage

>> group delete <group_label> | all

Security

Unsafe - groups may not be deleted while logging is enabled.

Description

Deletes one or all groups. Groups are specified by their labels. At least one existing group must be specified. The
parameters are as follows:

 <group_label> specifies by label a single group to delete from the pool.
 all causes all user-defined groups to be deleted from the pool.

A deleted group can no longer be used by any schedule. Any schedule in the pool of schedules which used the deleted
group will automatically have the group removed from its list. Historical datasets in the logger memory are not
affected when a group is deleted; the configuration snapshot saved in the dataset's metadata includes all group details
at the time the logger was enabled.

>> group
<< group count=4 maxcount=16 list=g.ctd|g.optical|g.chemical|g.pressure

>> group delete g.optical
<< group delete g.optical

>> group
<< group count=3 maxcount=16 list=g.ctd|g.chemical|g.pressure

Deleting g.optical removes it from the pool and reduces the count by one.

>> group
<< group count=3 maxcount=16 list=g.ctd|g.chemical|g.pressure

>> group delete all
<< group delete all

>> group

RBR#0014818revB 76

<< group count=0 maxcount=16 list=none

Deleting all groups removes all items from the pool and reduces the count to zero. The schedule list will indicate

it is empty with the value of none .

3.6.5 schedule
Usage

>> schedule [count maxcount list availablemodes availablefastperiods]

>> schedule <schedule_label> [grouplist | configlist | stream | storage | mode |

 <mode_dependent_parameters>]

>> schedule create <schedule_label>

>> schedule delete <schedule_label> | all

Security

Open.

Description

The schedule command can be used to create, delete, modify, and access sampling schedules within the
instrument.

To access meta information about all the configured schedules in the instrument, the schedule command can be
specified without any arguments. If a specific parameter is required, the parameter key can be provided as an argument
to the schedule command. The list of parameter keys are as follows:

 count reports the number of schedules currently defined.
 maxcount reports the maximum number of schedules that the logger can hold in its pool at any given time.
 list reports a list, by label, all defined schedules; labels in the list are separated by a pipe character ("|"), with no

spaces. Labels are reported in the order that the schedules were created, earliest first.
 availablemodes lists all the sampling modes configured to be available in the instrument; not all instruments

support all modes. Items in the list are separated by a pipe character ("|"), with no spaces.
 availablefastperiods reports a list of the fast measurement periods available to the instrument for sampling

rates faster than 1Hz. Each available period is reported to the nearest millisecond, and the values are separated
by a vertical bar, or "pipe" character, "|". The period for sampling rates faster than 1Hz can be set to any value in
the list, but no others. If there are no fast periods available, the word none is returned instead of a list of values.
Note that the periods given in the list may be supported in some modes but not others, depending on the
instrument's configuration.

>> schedule
<< schedule count=3 maxcount=16 list=test|schedule_04|basic_schedule
availablemodes=continuous|average|tide availablefastperiods=500|250|125|63

In order to access or modify properties for a specific schedule, provide the <schedule_label> as an argument to

the schedule command. The following parameters are available for a given schedule:

RBR#0014818revB 77

 <schedule_label> is a required parameter that specifies by label the schedule to access. Labels of schedules
cannot be renamed.

 grouplist [=<group_label_list ...>] reports or sets a list of groups defining the channels that will be sampled
according to this schedule. Labels in the list must be separated by a pipe character ("|"), with no spaces. The list
must specify at least one group for the schedule to be valid. Specifying the keyword none, by itself, in place of a
list of group labels, will clear the group list.

 configlist [=<config_label_list ...>] is a read-only parameter that reports a list of all the configurations currently
in the pool which use this schedule. Any configurations used for historical datasets stored in the logger's
memory are not included. Labels in the list are separated by a pipe character ("|"), with no spaces. If the
schedule is unused by any configurations, this list is replaced by the word none.

 stream [=serial | usb | off] is used to report or set the communication link over which data for this schedule will
be streamed in real time during the deployment. At most one link may be active for each schedule. Defaults
to off when the schedule is created.

 storage [=on | off] determines whether data for this schedule will be stored in memory during the deployment.
For data logging instruments which can store data, this parameter defaults to on when the schedule is created.
For sensor instruments that do not store data, schedules are created with this parameter set to off, and the
value can not be changed.

 mode [= continuous | regimes] reports or sets the sampling mode to be used by this schedule.
 <mode_dependent_parameters> will be described in more detail below.

Here are some points to be aware of when modifying a schedule.

 Any modification made to a schedule will cascade into all configurations currently in the pool which use the
schedule. Historical datasets in the logger's memory are not affected.

 The order of <group_labels> in the <group_label_list> determines the order in which channels will be sent in real
time and stored in memory for this schedule. For example, if group_A contains channels W and X,
and group_B contains channels Y and Z, then a group list of group_A|group_B results in a channel
order W,X,Y,Z, whereas group_B|group_A would result in Y,Z,W,X.

 It is possible to specify a <group_label> for a group that does not yet exist, but at some point the group must be
defined before the schedule can be used in a deployment.

Mode dependent parameters in each schedule are reported, and can be modified, only for the sampling mode currently
selected. Parameters for only one mode at a time can be held in non-volatile memory for each schedule; if the mode for
a schedule is changed, settings for the old mode are lost, and settings for the new mode start with a pre-defined set of
default values. The mode and settings of other schedules are not affected.

In all cases there may be instrument specific constraints on the parameter values that can be used, but here are some
general guidelines:

 A period must either be a multiple of 1000ms, or be specified from the list of availablefastperiods (see the
schedules command). The upper limit is 86400000ms, corresponding to 24 hours. The period values reported in
availablefastperiods all correspond to exact frequencies in Hz, rounded to the nearest millisecond; for
example, 125ms for 8Hz, 63ms for 16Hz. See also Tips for system integrators.

continuous mode

A simple mode in which data is acquired at a single, steady rate between the start and the end of the
deployment. The parameters are as follows:

 period [= <milliseconds>], the amount of time between consecutive samples; must comply with the
generic constraints on sampling periods given above.

 castdetection=off is reported for consistency with other types of instrument. It can not be set to on,
and attempting to do so will provoke an error message.

RBR#0014818revB 78

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828428

regimes

This mode is intended for use when the instrument is integrated into a moving platform. The water column is
divided into regions by depth, with a maximum of three regions, or regimes. Each regime can use a different
sampling rate, and within each regime the water column is divided into bins, which are again defined by
depth. All data acquired in each bin is averaged before being stored. For a more detailed discussion of the
regimes sampling mode, refer to the chapter Integrating with a profiling float in the Quick start section. The
parameters for regimes mode are as follows:

 direction [= ascending | descending]
This parameter indicates the intended vertical direction of the instrument through the water column
while sampling. ascending means that sampling will start at depth and continue until the instrument
reaches the surface, whereas descending means that sampling starts at (or near) the surface and
continues as the instrument depth increases.

 count [= 1 | 2 | 3]
This parameter indicates the number of regimes that are set; the minimum is 1 and the maximum is 3.
When multiple regimes are used, regime 1 is always where sampling begins; that is, if
direction=ascending then regime 1 is the deepest, whereas if direction=descending then regime 1 is
the shallowest.

 reference [=<channel label>]
This parameter indicates which channel is used to determine which regime, and which bin within that
regime, currently applies during sampling. This channel can either be an absolute or sea pressure
channel. Sea pressure is the difference between the absolute pressure measured and the atmospheric
pressure. Most instruments do not independently measure atmospheric pressure; in this case a
nominal fixed value is defined via the settings command.

 finalboundary [=<dbar>]
This parameter specifies the transition depth to cease sampling. So, if direction=ascending, the
boundary value is the uppermost depth of all of the regimes, whereas if direction=descending, the
boundary value is the lowest depth of any enabled regime. The value is given in units of dbar to a
precision of 1 dbar; fractional dbar values are not accepted. Before the instrument can be deployed,
the verify and enable commands will check that all regimes boundaries are strictly increasing if
direction=descending, or strictly decreasing if direction=ascending, and respond with an error
message if the constraint is violated.

 boundary1 [=<dbar>]
This parameter specifies the transition depth from one regime to the next. The boundary value
specified for each individual regime is the depth at which sampling starts in that regime. So, if
direction=ascending, the boundary value is the lowest depth of the regime, whereas if
direction=descending, the boundary value is the uppermost depth of the regime. The value is given in
units of dbar to a precision of 1 dbar; fractional dbar values are not accepted. Before the instrument
can be deployed, the verify and enable commands will check that all regimes boundaries are strictly
increasing if direction=descending, or strictly decreasing if direction=ascending, and respond with an
error message if the constraint is violated.

 binsize1 [=<dbar>]
This parameter specifies the size (depth range) used for each averaged bin. It is typically set by the user
so that the total regime size is an integer multiple of the bin size; however, if the last bin in the regime is
smaller than the rest, the measurement is stored "early" and the next regime commences. The bin size
is specified in units of dbar, with a precision of 0.1 dbar. If the bin size is set to 0.0, the logger will not
average the data per bin during the regime and will just record/stream every measurement.

 period1 [=<milliseconds>]
This parameter specifies the amount of time between consecutive samples throughout all bins in the
given regime. The value must comply with the generic constraints on sampling periods given above.

 boundary2 [=<dbar>]
 binsize2 [=<dbar>]

RBR#0014818revB 79

https://docs.rbr-global.com/display/L4DOC/settings
https://docs.rbr-global.com/display/L4DOC/verify
https://docs.rbr-global.com/display/L4DOC/.enable+vA
https://docs.rbr-global.com/display/L4DOC/verify
https://docs.rbr-global.com/display/L4DOC/.enable+vA

 period2 [=<milliseconds>]
 boundary3 [=<dbar>]
 binsize3 [=<dbar>]
 period3 [=<milliseconds>]

Parameters for the second and third regimes, if used, are exactly analogous to those for the first regime
already described.

When the vehicle is not in a defined regime, the logger will sample internally at the same rate as the first
regime in order to check when it has entered this regime. Measurements acquired during this period will not
be stored or streamed.
The average for each bin is stored as soon as the vehicle enters the next bin, travelling in the specified
direction. For example, in the following figure the average of the first bin in regime 2 is stored as soon as the
vehicle enters the second bin. When the vehicle goes back into the range defined for the first bin, these
measurements are discarded, but all measurements acquired in the second bin continue to be accumulated,
as long as the vehicle has not entered yet the third bin.
The bin average is calculated without any kind of interpolation. In the case of a bin size set to 0.0, there is no
averaging whatsoever.

RBR#0014818revB 80

3.6.5.1 create
Usage

>> schedule create <schedule_label>

Security

Unsafe - schedules may not be created while logging is enabled.

Description

Schedules can be created and deleted using the create or delete actions within the schedules command. In both cases
<schedule_label> must be specified as an argument to the action.

>> schedule
<< schedule count=3 maxcount=16 schedulelist=test|schedule_04|basic_schedule
availablemodes=continuous|average|tide,availablefastperiods=500|250|125|63

>> schedule create s.pressure
<< schedule create s.pressure

>> schedule s.pressure
<< schedule s.pressure grouplist=none configlist=none stream=off storage=on
mode=continuous period=1000 castdetection=off

>> schedule
<< schedule count=4 maxcount=16 schedulelist=test|schedule_04|basic_schedule|s.pressure
availablemodes=continuous|average|tide availablefastperiods=500|250|125|63

count channel
The logger may be configured with a channel of type cnt_00. This is a derived channel designed to count the
number of readings that actually contributed to an averaged value; it may not be included in every logger
configuration.
It is most useful in regimes sampling mode, where it will indicate the number of samples averaged to obtain
the reading in each bin. It may also be used in the average or tide sampling modes, where it will usually have
the same value as the measurementcount parameter, unless it was necessary to omit some readings from the
average because of errors. For other sampling modes, the value of this channel (if present) will just be 1;
remember that the channel can be excluded from any or all groups if it is not required.
In all cases, if the channel is sampled according to multiple schedules, the value reported for each schedule
could be different and, in each case, will be applicable to the schedule using it.

RBR#0014818revB 81

3.6.5.2 delete
Usage

>> schedule delete <schedule_label> | all

Security

Unsafe - schedules may not be deleted while logging is enabled.

Description

Deletes one or all schedules. Schedules are specified by their labels. At least one existing schedule must be specified.
The parameters are as follows:

 <schedule_label> specifies by label a single schedule to delete from the pool.
 all causes all user-defined schedules to be deleted from the pool.

A deleted schedule can no longer be used in any configuration. Any configuration in the configuration pool which used
the deleted schedule will automatically have the schedule removed from its list. Historical datasets in the logger
memory are not affected when a schedule is deleted; the configuration snapshot saved in the dataset's metadata
includes all schedule details at the time the logger was enabled.

Schedules can be deleted using the delete action within the schedule command. The <schedule_label> must be
specified as an argument to the action.

>> schedule
<< schedule count=4 maxcount=16 list=test|schedule_04|basic_schedule|s.pressure
availablemodes=continuous|average|tide availablefastperiods=500|250|125|63

>> schedule delete schedule_04
<< schedule delete schedule_04

>> schedule
<< schedule count=3 maxcount=16 list=test|basic_schedule|s.pressure
availablemodes=continuous|average|tide availablefastperiods=500|250|125|63

Deleting schedule_04 removes it from the pool and reduces the count by one.

>> schedule
<< schedule count=3 maxcount=16 list=test|basic_schedule|s.pressure
availablemodes=continuous|average|tide availablefastperiods=500|250|125|63

>> schedule delete all
<< schedule delete all

>> schedule
<< schedule count=0 maxcount=16 list=none availablemodes=continuous|average|tide
availablefastperiods=500|250|125|63

Deleting all schedules removes all items from the pool and reduces the count to zero. The schedule list will

indicate it is empty with the value of none .

RBR#0014818revB 82

3.6.6 config
Usage

>> config [count maxcount list]

>> config <config_label> [schedulelist]

>> config create <configuration_label>

>> config delete <configuration_label> | all

Security

Open.

Description

This command is used to access information regarding all of the sampling configurations within the instrument.
Configurations contain a list of schedules to be run in a deployment. The configuration is specified at the time of
enabling the instrument. Configurations can be created, deleted, accessed, and modified, however, they cannot be
renamed. If renaming is required it is recommended to delete the configuration and create a new configuration with the
appropriate label.

To access meta information about all configurations which exist in the instrument, the config command can be
used without any arguments. If a specific parameter is required, the parameter name can be provided as an argument
to the config command. In this case only that parameter will be returned in response. The list of parameters are as
follows:

 count reports the number of configurations currently defined.
 maxcount reports the maximum number of configurations that the logger can hold in its pool at any given time.
 list reports by label all defined configurations; labels in the list are separated by a pipe character (“|”), with no

spaces. Labels are reported in the order that the configurations were created, earliest first.

>> config
<< config count=5 maxcount=16 list=test_config|config_01|config_02|cfg_profiling|
default_config

>> config list
<< config list=test_config|config_01|config_02|cfg_profiling|default_config

To access parameters for a specific config, provide the <config_label> as an argument to the config
command. The following parameters are available for a given config:

 schedulelist reports a list of schedules to be executed when this configuration is used to enable a
deployment. Labels in the list must be separated by a pipe character ('|'), with no spaces. The list must specify
at least one valid schedule before the configuration can be used. Specifying the keyword none, by itself, in place
of a list of schedule labels, will clear the schedule list for the config. A maximum of eight schedule labels can be
added to the schedulelist.

RBR#0014818revB 83

>> config
<< config count=5 maxcount=16 list=test_config|config_01|config_02|cfg_profiling|
default_config

>> config config_01
<< config config_01 schedulelist=default_schedule

Modifications can only be performed on a single config at a time. In order to access or modify properties for a specific
config, provide the <config_label> as an argument to the configs command. Currently there is only a single
parameter available for a given config:

 schedulelist reports or sets a list of schedules to be executed when this configuration is used to enable a
deployment. Labels in the list must be separated by a pipe character (“|”), with no spaces. The list must specify
at least one valid schedule before the configuration can be used. Specifying the keyword none, by itself, in place
of a list of schedule labels, will clear the schedule list for the config.

Here are some points to be aware of when modifying a configuration.

 Any modification made to a configuration will apply only when it is used for future deployments; historical
datasets in the logger's memory are not affected.

 The order of <schedule_labels> in the <schedule_label_list> does not matter.

>> config cfgPrimary
<< config cfgPrimary schedulelist=default_schedule

>> config cfgPrimary schedulelist = schedule_fast|schedule_burst
<< config cfgPrimary schedulelist=schedule_fast|schedule_burst

>> config cfgPrimary
<< config cfgPrimary schedulelist=schedule_fast|schedule_burst

3.6.6.1 create
Usage

>> config create <configuration_label>

Security

Unsafe - configurations may not be created while logging is enabled.

Description

A configuration can be created using the create actions within the config command. The <config_label> must be
specified as an argument to the action.

>> config
<< config count=5 maxcount=16 list=test_config|config_01|config_02|cfg_profiling|
default_config

A maximum of eight schedule labels can be added to the schedulelist.

RBR#0014818revB 84

>> config create standard_config
<< config create standard_config

>> config
<< config count=6 maxcount=16 list=test_config|config_01|config_02|cfg_profiling|
default_config|standard_config

3.6.6.2 delete
Usage

>> config delete <configuration_label> | all

Security

Unsafe - configurations may not be deleted while logging is enabled.

Description

Deletes one or all configurations. Configurations are specified by their labels. At least one existing configuration must
be specified. The parameters are as follows:

 <configuration_label> specifies, by label, a single configuration to delete from the pool.
 all causes all user-defined configurations to be deleted from the pool.

A deleted configuration can no longer be used for a future deployment. Any historical deployments in the logger
memory that used the deleted configuration are not affected; all datasets include as part of their metadata a snapshot
of the configuration when the logger was enabled.

>> config
<< configs count=6 maxcount=16 list=test_config|config_01|config_02|cfg_profiling|
default_config|standard_config

>> config delete config_01
<< config delete config_01

>> config
<< config count=5 maxcount=16 list=test_config|config_02|cfg_profiling|default_config|
standard_config

Deleting config_01 removes it from the pool and reduces the count by one.

>> config
<< configs count=6 maxcount=16 list=test_config|config_01|config_02|cfg_profiling|
default_config|standard_config

>> config delete all
<< config delete all

>> config
<< config count=0 maxcount=16 list=none

RBR#0014818revB 85

Deleting all configurations removes all items from the pool and reduces the count to zero. The configuration list

will indicate it is empty with the value of none .

3.6.7 settings
Usage

>> settings [prompt [=on|off]] [confirmation [=on|off]]

Security

Open.

Description

Reports or sets the values of miscellaneous settings in the logger as described below.

 prompt specifies whether the instrument returns the “Ready:” prompt following a response. The as-shipped
default value is on.

 confirmation specifies whether the instrument returns a response from a create or set/modify operation to
verify the new state. The as-shipped default value is on.
A response will always be sent when a parameter value is simply requested.

Examples

>> settings
<< settings prompt=on confirmation=on

Request all settings

>> settings confirmation
<< settings confirmation=on

Request only the confirmation setting

>> settings prompt=off
<< settings prompt=off

Update the prompt setting

3.6.8 parameters
Usage

>> parameters [altitude | atmosphere | avgsoundspeed | density | pressure |

salinity | speccondtempco | temperature]

Security

Unsafe.

RBR#0014818revB 86

Description

Reports or sets channel parameters which may be required when computing calibrated output in the logger as
described below.

 altitude [=<value>] is the height above the seabed in metres at which the logger is deployed. This is a user-
entered parameter which is required by host software to calculate statistics and parameters for wave analysis: it
is not used internally by the instrument, and if wave analysis is not required, the parameter can be ignored.

 speccondtempco [=<value>] is the temperature coefficient used to correct the derived channel for specific
conductivity to 25°C. Its value depends on the ionic composition of the water being monitored, and should be
set to an appropriate value for best results. A typical range of values is 0.0191 to 0.0214, with the lower end
suitable for KCl solutions and the upper end for NaCl solutions. When specifying a value, any simple numeric
format compatible with floating point representation may be used; for example 0.02, 0.0200 or 2e-2 would all be
accepted. If the parameter is never explicitly set, the default value is 0.0191, suitable for standard KCl solution.

 atmosphere, avgsoundspeed, density, pressure, salinity, temperature [=<value>]: these are default
parameter values, to be used when the instrument does not have a channel which measures the named
parameter, but one or more cross-channel calibration equations requires it as an input.
When specifying a value, any simple numeric format compatible with floating point representation may be used;
for example 11, 11.000 or 1.10e+1 would all be accepted. The units of these parameter values are implicit,
and must be as shown below. If these parameter values are never explicitly set, they will have default values
based on standard sea water (salinity = 35PSU, temperature = 15°C, hydrostatic pressure = 0 dbar), and one
standard atmosphere for atmospheric pressure.

Parameter Units Default value

altitude m 0

atmosphere dbar 10.132501

avgsoundspeed m/s 1506.8

density g/cm3 1.026021

pressure dbar 10.132501

salinity PSU 35

speccondtempco 0.0191

temperature °C 15.0

Examples

>> parameters atmosphere
<< parameters atmosphere=10.132501

Request only the atmosphere parameter

RBR#0014818revB 87

>> parameters density=1.0295
<< parameters density=1.0295

Update the density parameter

>> parameters
<< parameters altitude=0.0000 atmosphere=10.1325010 avgsoundspeed=1506.8000
density=1.0260206 pressure=10.1325010 salinity=35.0000 speccondtempco=0.0191
temperature=15.0000

Request all parameters

RBR#0014818revB 88

4 Format of stored data
4.1 Overview

Three major types of deployment information are stored in a instrument's memory:

 Sample data, comprising sets of measured values from all active channels in the instrument.
 Events, which are records of non-sample incidents used to aid interpretation, or for diagnostics.
 Metadata, which contains meta-information about the instrument and the deployment parameters used for

each schedule.

All types of data are contained in "storage objects"; a storage object may be thought of as a file. Depending on the type
of memory used by the instrument, this may actually be a file in a folder that is part of a larger file system. However, not
all instruments implement memory in this way, and may not allow all the common file operations, but thinking of the
storage object as a file is still a useful convenience for notation.

4.1.1 Sample data
Sample data is stored according to the schedules executed by the configuration when acquiring the data for the
deployment; there is one storage object for each schedule. Only data from the channels associated with a schedule will
appear in its storage object; data from other channels will be found in the storage objects for other schedules.
However, it is possible for any channel to be associated with more than one schedule, in which case its data will appear
in each of the associated storage objects. A channel that is not associated with any schedule that was executed by this
configuration is considered to be inactive; it will not have been sampled, and so will have no data in the memory.

The format of the sample data within a storage object for a schedule is detailed further in the Section Sample data
storage format that follows.

4.1.2 Events
Events are typically all contained in a single storage object. Some event types apply to the entire instrument, others
may apply to a single schedule, while yet others may apply only to a single channel. For example:

 An event indicating a change from external power to internal batteries applies to the whole instrument.
 A cast detection event would apply to a schedule.
 An event indicating a change of sensor gain would apply to only a single channel.

This information is coded within the event itself, so that events may be filtered according to different criteria when
retrieved.

The format of the event data within the storage object is detailed further in the Section Event data storage format that
follows.

4.1.3 Metadata
Metadata is typically all contained in a single storage object, and includes all the information necessary to describe the
state of the instrument when the deployment was enabled. This information falls into several categories, or levels, and
overview of which is:

 Details of the instrument that do not change over time (for example, its serial number).
 Settings that apply to the whole instrument and may be changed, although once set they are modified rarely, if

ever (for example, the serial baud rate).
 Settings that apply to the whole instrument and may commonly be changed from one deployment to the next

(for example, the start time).

Unless stated otherwise, all items in the instrument's memory are stored in little-endian format.

RBR#0014818revB 89

 The organization of schedules, groups and channels used by the configuration for this deployment.
 The groups and sampling parameters used by each schedule.
 The membership of channels within groups.
 Details of each channel used, including calibration coefficients and any other specific information that applies.

An attempt is made to limit the metadata to information that is relevant to the deployment. Information about any
channel, group or schedule may typically not appear in the metadata if the item was not used by the configuration for
this deployment, even though the item is defined in the instrument.

The structure of the metadata can be quite complex, depending on the number of schedules and groups involved, but it
is organized so that metadata can be filtered according to what is applicable to any particular schedule.

Not all users will need or want access to the metadata, but for those who do, the organization and format is detailed
further in the Section Metadata layout that follows.

4.1.4 Related commands
dataset, an overview of all of the datasets stored in the instrument as well as details for an individual dataset.

download, retrieve all or part of the information for a dataset.

enable, create a dataset when the instrument is enabled for deployment.

storage, obtain general information about the instrument's data storage.

4.2 Sample data storage format

4.2.1 Options

float32 Each reading is stored in IEEE single precision 32-bit floating point format.

float64 Each reading is stored in IEEE double precision 64-bit floating point format.

calfloat64 Numerically the same as float64, but no calibration equation is applied to the data; the value is a
ratio relative to full-scale, nominally 0.0 to 1.0.

The format to expect for all schedules can be determined by the storage command (see Related commands below) or
from the metadata entry data_format in the Deployment section (section 4) of the metadata. Once the value for
normal deployments is known for a given instrument, it can be assumed that it will not change during the instrument's
lifetime. The only case when the format may be different is if the deployment was enabled in calibration mode, in
which case the format will be calfloat64.

4.2.2 Layout
Within the sample data for a given schedule, a single sample with N channels (N > 0) will have the form:

Timestamp 1st channel value ... Nth channel value

All individual data items are stored in memory in little-endian format (least significant byte at lower address). Within a
given schedule, all samples occupy the same number of bytes each.

The Timestamp is a 64-bit count of milliseconds elapsed since 1970/01/01 00:00:00, commonly referred to as the Unix
epoch. It accounts for leap years, but not leap seconds, time zones or any other adjustments. Note that although the

RBR#0014818revB 90

https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13828440&linkCreation=true&spaceKey=GEN4CR&title=dataset+%28obsolete%29
https://docs-rbr.atlassian.net/wiki/pages/resumedraft.action?draftId=13828450#Sampledatastorageformat-Gen4_SampleData_RelatedCommands

Unix epoch is used as a reference point, the time does not conform exactly to the definition of "Unix time", which is
measured in seconds.

All channel values have the same numeric format; one of float32, float64 or calfloat64 (see Options, above). The
order in which channel values appear is determined by:

1. The order in which groups are specified for this schedule.
2. Within each group, the order in which channels are specified.

These orderings are determined by the schedule and group commands (see Related commands, below).

All channel values have the potential to encode an error value. Error values are denoted by NaNs with an embedded
payload (see Errors, below)

4.2.3 Related commands

instrument

>> instrument datatype
<< instrument datatype=float32 | float64 | calfloat64

 Read-only
 Sample data is in the same format for all channels.
 Normal deployments will be in either float32 or float64, the choice is configured at the Factory.

enable

>> enable config=<config_label> dataset=<dataset_label> storagemode=normal | calibration
<< enable config=<config_label> dataset=<dataset_label> storagemode=normal | calibration

 storagemode is optional and defaults to normal if not specified.
 normal selects a data storage format of either float32 or float64, according to the logger's configuration.
 calibration always selects a data storage format of calfloat64, regardless of the normal setting.

schedule

>> schedule grouplist=<group_label_list ...>
<< schedule grouplist=<group_label_list ...>

 The order in which group labels are specified determines the order in which groups appear in the stored data.

group

>> group channellist=<channel_label_list ...>
<< group channellist=<channel_label_list ...>

 The order in which channel labels are specified determines the order in which channels appear within their
group in the stored data.

dataset

>> dataset <dataset_label> datatype
<< dataset <dataset_label> datatype=float32 | float64 | calfloat64

 The data storage format of a historical dataset held in the logger's memory can be queried at any time.

4.2.4 Errors
Errors related to channels are denoted by negative-signed NaN values. In many cases, detecting a NaN as a channel
value should suffice to indicate an error has occurred since most error codes are diagnostic/correctable for RBR-only.

RBR#0014818revB 91

https://en.wikipedia.org/wiki/Unix_time
https://docs-rbr.atlassian.net/wiki/pages/resumedraft.action?draftId=13828450#Sampledatastorageformat-Gen4_SampleData_Options
https://docs-rbr.atlassian.net/wiki/pages/resumedraft.action?draftId=13828450#Sampledatastorageformat-Gen4_SampleData_RelatedCommands
https://docs-rbr.atlassian.net/wiki/pages/resumedraft.action?draftId=13828450#Sampledatastorageformat-Gen4_SampleData_Error
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13828450&linkCreation=true&spaceKey=GEN4CR&title=schedule+%28obsolete%29

For conversion from float32 to float64, a 29-bit least-significant-bit-zero-pad of the payload is used (mantissa is left-
shifted 29 bits). Conversely, for float64 to float32, a 29-bit least-significant-bit-truncation of the payload is used
(mantissa is right-shifted 29 bits). This conversion matches several C compiler and Java intrinsic conversions, but
integrators should check intrinsic conversions in their own environments. Except for the case of a general error, the
setting of the quiet/signalling bit (float32: 0x00400000, float64: 0x0008000000000000) should not be relied on for error
determination; for a general error, the bit will be set.

Error float32 bits float64 bits Description

0x7F800000 0x7FF0000000000000 +inf

0xFF800000 0xFFF0000000000000 -inf

0x7FC0000 0x7FF0000000000000 +NaN

0 0xFFC0000 0xFFF8000000000000 -NaN; General error condition; error from undefined
mathematical operation

1 0xFFC00001 0xFFF8000020000000 ADC error – end of conversion

2 0xFFC00002 0xFFF8000040000000 ADC error – invalid value

3 0xFFC00003 0xFFF8000060000000 Bus error – invalid address

4 0xFFC00004 0xFFF8000080000000 Bus error – frame overflow

5 0xFFC00005 0xFFF80000A0000000 Bus error – locked

6 0xFFC00006 0xFFF80000C0000000 Bus error – cannot transmit

7 0xFFC00007 0xFFF80000E0000000 Bus error – receive timed out

8 0xFFC00008 0xFFF8000100000000 Bus error – invalid frame

9 0xFFC00009 0xFFF8000120000000 Sample error – no sample started

10 0xFFC0000A 0xFFF8000140000000 Sample error – sample in progress

11 0xFFC0000B 0xFFF8000160000000 Sample error – sample failed

12 0xFFC0000C 0xFFF8000180000000 Sample error – averaging failed

13 0xFFC0000D 0xFFF80001A0000000 Bus error – packet truncated

14 0xFFC0000E 0xFFF80001C0000000 Data error – unable to compute

15 0xFFC0000F 0xFFF80001E0000000 Safety – high power consumption

RBR#0014818revB 92

Error float32 bits float64 bits Description

16 0xFFC00010 0xFFF8000200000000 Data error – out of range

17 0xFFC00011 0xFFF8000220000000 Data error – under range

18 0xFFC00012 0xFFF8000240000000 Data error – over range

19 0xFFC00013 0xFFF8000260000000 Sensor error – communications timeout

20 0xFFC00014 0xFFF8000280000000 Sensor error – cannot parse response

21 0xFFC00015 0xFFF80002A0000000 Data error – not calibrated / invalid calibration

22 0xFFC00016 0xFFF80002C0000000 Data error – malformed floating point number

23 0xFFC00017 0xFFF80002E0000000 Data error – no sample logged

4.3 Metadata layout
 All multi-byte data items are stored in memory in little-endian format (least significant byte at lower address).
 Except for Section 1, it should not be assumed that all sections are present, or that they are in order.

Section ID Description

TAG A special tag. Ruskin or external reader can use it to check if the data is a L3.5/Gen4
header.

Metadata 1 A high level map of the metadata, used for navigation, not required to interpret the
metadata itself.

Logger 2 Fixed information about the logger.

Settings 3 User settings that do not directly impact a deployment, and may not even be changed very
often between deployments.

Deployment 4 User settings that do impact the values, storage, or presentation of deployment data for all
schedules, or which are otherwise closely related to the deployment.

Configuratio
n 5 Top level information about the configuration used for the deployment.

Schedules 6 Organized to allow extraction of individual schedules to construct metadata on a per-
schedule basis.

6.1 Schedule map. Only those schedules used by this configuration appear in the map.

RBR#0014818revB 93

Section ID Description

6.2.1 Schedule details. Details of the 1st schedule.

6.2.2 Schedule details. Details of the 2nd schedule.
Details as above for 1st schedule.

... ...

6.2.S Schedule details. Details of the S th schedule.
Details as above for 1st schedule.

User-groups 7 Organized to allow extraction of individual groups to construct metadata on a per-
schedule basis.

7.1 Group map. Only those groups used by this configuration appear in the map.

7.2.1 Group details. Details of the 1st user-group.

7.2.2 Group details. Details of the 2nd user-group.
Details as above for 1st group.

... ...

7.2.G Group details. Details of the G th user-group.
Details as above for 1st group.

Module-
groups 8 If present, used for diagnostic purposes.

8.1 Module group map.

8.2.1 Module group details. Details of the 1st FE-group.

8.2.2 Module group details. Details of the 2nd FE-group.
Details as above for 1st FE-group.

... ...

8.2.F Module group details. Details of the F th FE-group.
Details as above for 1st FE-group.

Channels 9 Internal map, then each channel has its own self-contained subsection, so that individual
channels can be extracted to construct metadata on a per-schedule basis.

9.1 Channel map outlining where the channel details can be found within the following
sections.

RBR#0014818revB 94

Section ID Description

9.2.1 Channel details. Details of the 1st channel.

9.2.2 Channel details. Details of the 2nd channel.
Details as above for 1st channel.

... ...

9.2.C Channel details. Details of the C th channel.
Details as above for 1st channel.

4.3.1 TAG
A special tag. Ruskin or external reader can use it to check if the data is a L3.5/Gen4 header.

Item Size
(bytes) Comment

0x00524252 4 A tag to indicate L3.5/Gen4 type header ("RBR\0"). L3 deployment header start with byte
0x01.

4.3.2 Metadata
A high level map of the metadata, used for navigation, not required to interpret the metadata itself.

Item Size
(bytes) Comment

Section ID 4 0x01000000, "1.0.0.0"

Section size 2 Variable; omitted sections have no map entry. Includes section CRC.

Metadata
version 4

Major.Minor.Patch, eg. 0x01166AA5, "1.22.27301"

0x00020000, "00.02.0000" - Added hash code

0x00010000, "00.01.0000" - Initial release

Total size 4 Complete size of all metadata, including all CRCs.

Hash code 4
Unique deployment identifier.

Introduction: v00.02.0000

RBR#0014818revB 95

Section ID
(32b)

Offset
(32b)

Size
(16b) Comment

0x01000000 0x0000000
4 variable Section 1 always present at offset 4.

0x02000000 variable variable Includes any and all 2.X.X.X sections.

.... variable Except for Section 1, it should not be assumed that all sections are present, or
that they are in order.

0x08000000 variable variable
Includes any and all 8.X.X.X sections.

Section 8 is the last in this example.

Followed by a standard 16b CRC of all Section 1.

4.3.3 Logger
Fixed information about the logger.

Item Size(byt
es) Comment

Section ID 4 0x02000000, "2.0.0.0"

Section size 2 Variable; part number sizes may vary. Includes CRC.

f/w type 4 120 for L3.5, 130 for SL4

fw_version_stri
ng 36

NUL-terminated firmware version string, maximum 35 printable characters. Example for
Gen4, including semantic version number, special identifiers, and build date/time:
0.1.1-dev+202307281615

serial_number 4

model_name 16 Max 15 printable characters, NUL terminated, 0xFF-padded if necessary.

permissions 4
32b flags for permitted features.

 Bit flags for feature permissions.

cell_count 2 Battery capacity in AA cells, usually 0, 4, or 8.

cell_format 1 16 Max 15 printable characters, NUL terminated, 0xFF-padded if necessary.

fe_baudrate 4 Baud rate on FE-bus.

RBR#0014818revB 96

Item Size(byt
es) Comment

pn_size 2 Length of part number, includes terminating NUL.

part_number variable Part number string, does not include a NUL terminator.

psu_pn_size 2 Length of PSU part number, includes terminating NUL.

psu_part_numb
er variable Power supply part number string, does not include a NUL terminator.

CRC 2 A standard 16b CRC of all Section 2.

1 An arbitrary string that the logger does not currently use internally.

4.3.4 Settings
User settings that do not directly impact a deployment, and may not even be changed very often between deployments.

Item Size
(bytes) Comment

Section ID 4 0x03000000, "3.0.0.0"

Section size 2 As things stand, 44. Includes CRC.

serial_baudrate 4 The baud rate as an integer number.

serial_mode 4
Enumerated code.

See Serial mode definitions.

RESERVED 4

RESERVED 4

RESERVED 4

wifi_initial_tim
eout 4 seconds - CHANGED to milliseconds for consistency.

wifi_command_
timeout 4 seconds - CHANGED to milliseconds for consistency.

poll_poweroff_
delay 4 milliseconds - formerly fetch.

RBR#0014818revB 97

Item Size
(bytes) Comment

feature_usage 4
Bit flags showing usage of instrument-wide features; moved here from the
Deployment section.

 See Feature flag bit assignments.

CRC 2 A standard 16b CRC of all Section 3.

4.3.4.1 Feature flag bit assignments

Flag Bit Comment 1 0

PROMPT b00 prompt was turned on/off on off

CONFIRMATION b01 confirmation was turned on/off on off

FWLOCK b10 f/w updates locked/permitted locked permitted

WETSWITCH b14 indicates whether the wetswitch gate is used or not used unused

SENSORPOWERALW
AYSON b15 sensors kept powered up between samples, or not always

on normal

TWISTACTIVATION b16 indicates whether the twist activation gate used or not used unused

RESERVED b19 used unused

SIMULATED_DATA b20 simulated data in use or not simulate
d normal

WIFI b22 Wi-Fi enabled or not enabled disabled

PAUSERESUME b23 pause/resume feature used or not used unused

4.3.4.2 Serial mode definitions

Bit Value Description

0 RS232 full duplex standard RS-232

1 RS485F full duplex RS-485

2 UART non-inverted 3V (idle high)

3 UART_IDLEL
OW inverted 3V (idle low)

RBR#0014818revB 98

4.3.5 Deployment
User settings that do impact the values, storage, or presentation of deployment data for all schedules, or which are
otherwise closely related to the deployment.

Item Size
(bytes) Comment

Section ID 4 0x04000000, "4.0.0.0"

Section size 2 Fixed, 116 as it stands. Includes CRC.

data_format 4
An enumerated code.

 See Memory format codes.

output_format 4
Bit flags enable/disable features of the format.

See Outputformat bit flags.

status 2 At time of enable; one of pending (1), gated (4) or logging (2). 1

enable_time 8 Logger time when enable successful, 64b Unix epoch milliseconds.

start_time 8 64b Unix epoch milliseconds

end_time 8 64b Unix epoch milliseconds

utc_offset 4 milliseconds (signed 32b integer). If the clock command reports offsetfromutc =
unknown, the value is -2147483648 (0x80000000).

simulation_peri
od 4 milliseconds

reserved 1

reserved 1

reserved 4

reserved 4

wifi_reference_
pressure 4 float, nominal pressure at water surface (not fixed, can vary during deployment).

batt_type_inter
nal 2

Enumerated ID code

See Internal battery codes.

RBR#0014818revB 99

https://docs.rbr-global.com/display/L4DOC/clock

Item Size
(bytes) Comment

batt_type_exter
nal 2

Enumerated ID code

See External battery codes.

batt_cap_inter
nal 4 float, Joules

batt_cap_exter
nal 4 float, Joules

energyused_int
ernal 4 float, Joules at time deployment enabled

energyused_ext
ernal 4 float, Joules at time deployment enabled

speccond_tem
pco 4 float

default_temp 4 float

default_pres 4 float

default_atms 4 float

default_dens 4 float

default_salinity 4 float

default_avgsou
ndspeed 4 float

altitude 4 float

CRC 2 A standard 16b CRC of all Section 4.

1At the time of writing the intent is to retain these enumerated status values, and not to condense them to the values
now reported by the deployment status command. Under that scheme, ‘pending’ is a special case of ‘gated’ (gated by
time), and ‘logging’ is now known as ‘sampling’.

4.3.5.1 Memory format codes

Code Name Description

0 QUERY (Internal use only: requests current format)

RBR#0014818revB 100

Code Name Description

1 FLOAT32 32b IEEE single precision floating point, calibration equation applied.

2 FLOAT64 64b IEEE double precision floating point, calibration equation applied.

3 CALFLOAT64 64b IEEE double precision floating point in the nominal range 0.0 to 1.0, no calibration
equation applied.

4 NORMAL (Internal use only: clears CALFLOAT64 format and restores FLOAT32 or FLOAT64)

4.3.5.2 Outputformat bit flags

Bit Value Description

b0 1 / 0 Output does/doesn't include the logger serial number.

b1 1 / 0 Output does/doesn't include a schedule label.

b2 1 / 0 Output does/doesn't include a CRC.

b3 1 / 0 Output encoding is binary (TBD) / ASCII.

b4 1 / 0 Output data type is float64 / float32.

b5 1 / 0 Output does/doesn't include a date and time.

b6 ...
b31 n/a Reserved

Refer to the outputformat command for examples.

4.3.5.3 Internal battery codes

Code Name Description

0 NONE no internal battery at all.

1 OTHER unspecified battery, not yet supported.

2 LISOCL2 lithium thionyl chloride.

3 LIFES2 lithium iron sulphide.

4 ZNMNO2 generic alkaline.

5 LINIMNCO lithium-ion rechargeable (UltraFire).

RBR#0014818revB 101

Code Name Description

6 NIMH nickel metal hydride rechargeable.

4.3.5.4 External battery codes

Code Name Description

100 NONE no external power source.

101 OTHER unspecified external power source.

102 LISOCL2 RBRfermata lithium thionyl chloride.

103 ZNMNO2 RBRfermata generic alkaline.

104 LIMNO2 RBRfermette3 CR123A lithium.

105 FERMETTE3_LISOCL2 RBRfermette3 lithium thionyl chloride.

106 FERMETTE3_LIFES2 RBRfermette3 lithium iron sulphide.

107 FERMETTE3_ZNMNO
2 RBRfermette3 generic alkaline.

108 FERMETTE3_LINIMNC
O RBRfermette3 generic alkaline.

109 FERMETTE3_NIMH RBRfermette3 generic alkaline.

110 FERMATA_NIMH RBRfermata nickel metal hydride (rechargeable) 12V (12s4p).

111 FERMATA_LISOCL2 RBRfermata lithium thionyl chloride 24V (8s6p).

112 FERMATA_ZNMNO2 RBRfermata generic alkaline 12V (12s4p).

4.3.6 Configuration
Top level information about the configuration used for the deployment.

Item Size
(bytes) Comment

Section ID 4 0x05000000, "5.0.0.0"

RBR#0014818revB 102

Item Size
(bytes) Comment

Section size 2 As it stands, 72. Includes CRC.

dataset_label 32 NUL-terminated string, padded with 0xFF if needed.

configuration_l
abel 32 NUL-terminated string, padded with 0xFF if needed.

CRC 2 A standard 16b CRC of all Section 5.

4.3.7 Schedules
Organized to allow extraction of individual schedules to construct metadata on a per-schedule basis.

4.3.7.1 Schedule map

Item Size
(bytes) Comment

Section ID 4 0x06010000, "6.1.0.0"

Section size 2 Variable, depends on number of schedules. Includes CRC.

schedule_count 2 16b number of schedules used in this configuration, S

1st schedule
index 2 16b internal index value, 1-based

1st schedule
label 32 NUL-terminated string, padded with 0xFF if needed.

1st schedule
offset 2 Offset in bytes from the very start of Section 6.1.

2nd schedule
index 2 16b internal index value

2nd schedule
label 32 NUL-terminated string, padded with 0xFF if needed.

2nd schedule
offset 2 Offset in bytes from the very start of Section 6.1.

...

S th schedule
index 2 16b internal index value

RBR#0014818revB 103

Item Size
(bytes) Comment

S th schedule
label 32 NUL-terminated string, padded with 0xFF if needed.

S th schedule
offset 2 Offset in bytes from the very start of Section 6.1.

CRC 2 A standard 16b CRC of all Section 6.1.

4.3.7.2 Schedule details

Item Size
(bytes) Comment

Section ID 4 0x06020100, "6.2.1.0"

Section size 2 Variable, depends on type of schedule. Includes CRC.

internal_index 2 Duplicated from the map so the section can stand alone.

schedule_label 32 Duplicated from the map so the section can stand alone.

mode 1
Enumerated code for sampling mode (continuous, burst, etc.).

See Sampling mode codes.

flags 4
Stream on/off, storage on/off. Also destination of stream.

 See Schedule flags.

user_group_co
unt 1 Number of user-groups in this schedule.

user_groups 16 Internal indices of user-groups in this schedule, fixed-size list, 0xFF-padded.

FE-
group_count 1 (Diagnostic) Number of FE-groups in this schedule.

FE-groups 16 (Diagnostic) Internal indices of FE-bus groups, fixed-size list, 0xFF-padded.

parameters variable

mode-dependent sampling parameters

See Sampling mode parameters

 continuous
 burst / wave / average / tide
 ddsampling
 regimes

RBR#0014818revB 104

Item Size
(bytes) Comment

CRC 2 A standard 16b CRC of all Section 6.2.1.

4.3.7.3 Sampling mode codes

Code Sampling mode

0 CONTINUOUS

1 AVERAGE

2 TIDE

3 BURST

4 WAVE

5 DDSAMPLING

6 REGIMES

7 unknown (error)

Schedule flags

Bit Value Description

b0 1 / 0 Data is / isn't stored to memory.

b1 1 / 0 Data is / isn't streamed to USB.

b2 1 / 0 Data is / isn't streamed to Serial.

b3 1 / 0 Data is / isn't streamed to Wi-Fi.

b4 ...
b31 n/a Reserved

RBR#0014818revB 105

4.3.7.4 Sampling mode parameters

4.3.7.4.1 continuous

Paramete
r

Size
(bytes) Description

period 4 milliseconds

cast_detec
tion 1 off (0) | on (1)

4.3.7.4.2 Burst sampling (averaging, tides, waves)

Paramete
r

Size
(bytes) Description

measurem
entperiod 4 milliseconds

period 4 milliseconds

measurem
entcount 4 samples

4.3.7.4.3 Directional sampling (ddsampling)

Paramete
r

Size
(bytes) Description

direction 1 descending (0) | ascending (1)

cast_detec
tion 1 off (0) | on (1)

fast_perio
d 4 milliseconds

slow_peri
od 4 milliseconds

fast_thres
hold 4 dbar, float

slow_thres
hold 4 dbar, float

RBR#0014818revB 106

4.3.7.4.4 Regime sampling

Paramete
r

Size
(bytes) Description

direction 1 descending (0) | ascending (1)

count 1 1 | 2 | 3

reference 1
This is an index of the channel used as a reference pressure for controlling regimes
operation. The channel indices are assigned in the same order as the channel labels are
reported by the command channels channellist. The index of the first channel is 1.

finalboun
dary 2 units of dbar

boundary1 2 units of dbar

binsize1 2 units of 0.1 dbar

period1 4 milliseconds

boundary2 2 units of dbar

binsize2 2 units of 0.1 dbar

period2 4 milliseconds

boundary3 2 units of dbar

binsize3 2 units of 0.1 dbar

period3 4 milliseconds

RBR#0014818revB 107

https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13830111

4.3.8 User groups
Organized to allow extraction of individual groups to construct metadata on a per-schedule basis.

4.3.8.1 User group map
Only those groups used by this configuration appear in the map.

Item Size
(bytes) Comment

Section ID 4 0x07010000, "7.1.0.0"

Section size 2 Variable, depends on number of groups. Includes CRC.

user_group_coun
t 2 16b number of user-groups used in this configuration, G

1st user-
group index 2 16b internal index value, 1-based

1st user-group
label 32 NUL-terminated string, padded with 0xFF if needed.

1st user-group
offset 2 Offset in bytes from the very start of Section 7.1.

2nd user-
group index 2 16b internal index value

2nd user-group
label 32 NUL-terminated string, padded with 0xFF if needed.

2nd user-group
offset 2 Offset in bytes from the very start of Section 7.1.

...

G th user-group
index 2 16b internal index value

G th user-group
label 32 NUL-terminated string, padded with 0xFF if needed.

G th user-group
offset 2 Offset in bytes from the very start of Section 7.1.

CRC 2 A standard 16b CRC of all Section 7.1.

RBR#0014818revB 108

4.3.8.2 User group details
Details for a specific user group

Item Size
(bytes) Comment

Section ID 4 0x07020100, "7.2.1.0"

Section size 2 As it stands, 116. Includes CRC.

internal_index 2 Duplicated from the map so the section can stand alone.

group_label 32 Duplicated from the map so the section can stand alone.

schedule_list 4 Bit flags referencing schedules to which this group belongs 1

fe_group_list 4 Bit flags referencing FE-groups associated with this group 1

channel_count 2 Total number of channels in the group, including hidden

channel_list 64 User group channel details. An ordered list of internal channel (index-flags) pairs,
0xFFFF-padded

CRC 2 A standard 16b CRC of all Section 7.2.1.

1 Bit flags for any items associated with this group but which are NOT used by this configuration are not set.

4.3.8.2.1 User group channel details

Item Size
(bytes) Comment

index 1 Internal index of channel, 1..32

flags 1

b0: 1 stored, 0 not stored.
b1: 1 streamed, 0 not streamed.
b2: 1 always hidden, 0 may be visible
b3: 1 hidden for this group, 0 visible
b4: 1 derived, 0 measured.

b5...b7: reserved (0)

RBR#0014818revB 109

4.3.9 Module group
If present, used for diagnostic purposes.

4.3.9.1 Module group map

Item Size
(bytes) Comment

Section ID 4 0x08010000, "8.1.0.0"

Section size 2 Variable, depends on number of FE-groups defined. Includes CRC.

fe_group_count 2 16b number of FE-groups defined, F

1st FE-
group index 2 16b internal index value, 1-based

1st FE-group
offset 2 Offset in bytes from the very start of Section 8.1.

2nd FE-
group index 2 16b internal index value

2nd FE-group
offset 2 Offset in bytes from the very start of Section 8.1.

...

F th FE-
group index 2 16b internal index value

F th FE-group
offset 2 Offset in bytes from the very start of Section 8.1.

CRC 2 A standard 16b CRC of all Section 8.1.

4.3.9.2 Module group details

Item Size
(bytes) Comment

Section ID 4 0x08020100, "8.2.1.0"

Section size 2 As it stands, 18 without the module_list, 82 with it. Includes CRC.

index 2 16b internal index value, 1..16

group_list 4 Bit-flags referencing the associated user-group indices.

RBR#0014818revB 110

Item Size
(bytes) Comment

channel_list 4 Bit-flags referencing the internal channel indices.

module_list 64 Redundant and optional, but may be convenient; up to 32 FE-bus addresses (16-bit) in
order of channel list, 0xFF-padded.

CRC 2 A standard 16b CRC of all Section 8.2.1.

4.3.10 Channels
Internal map, then each channel has its own self-contained subsection, so that individual channels can be extracted to
construct metadata on a per-schedule basis.

4.3.10.1 Channel map

Item Size
(bytes) Comment

Section ID 4 0x09010000, "9.1.0.0"

Section size 2 Variable. Includes CRC.

channel_count 2 Number of channels included in the configuration, C.

1st channel
index 2 Internal index value, 1...32

1st channel
label 32 NUL-terminated string, padded with 0xFF if needed.

1st channel
offset 2 Offset in bytes from the very start of Section 9.1.

2nd channel
index 2 Internal index value, 1...32

2nd channel
label 32 NUL-terminated string, padded with 0xFF if needed.

2nd channel
offset 2 Offset in bytes from the very start of Section 9.1.

...

C th channel
index 2 Internal index value, 1...32

RBR#0014818revB 111

Item Size
(bytes) Comment

C th channel
label 32 NUL-terminated string, padded with 0xFF if needed.

C th channel
offset 2 Offset in bytes from the very start of Section 9.1.

CRC 2 A standard 16b CRC of all Section 9.1.

4.3.10.2 Channel details

Item Size
(bytes) Comment

Section ID 4 0x09020100, "9.2.1.0"

Section size 2 Variable, depends on channel details. Includes CRC.

internal_index 2 Duplicated from the map so the section can stand alone.

module_address 2 FE-bus address corresponding to this channel.

type_key 16 NUL-terminated string, padded out to 16 bytes with 0xFF; for Ruskin to use as it
sees fit, unused by the logger.

channel_label 32 Duplicated from the map so the section can stand alone.

fw_info_size 2 Length of FE-module firmware information string, includes terminating NUL (may
be NUL-padded to a multiple of four bytes).

fw_info_string variable

NUL-terminated string reporting all FE-module firmware information (may be
NUL-padded to a multiple of four bytes). Example for L3/L3.5 FE-module:
T = FE-serial-phytoflash-Yield, F = 10.041, r = 4662, H

= 1, A = 128

user_groups 4
Bit flags referencing the internal indices of user-groups to which this channel
belongs. 1

fe_group_list 4 Bit flags referencing FE-groups associated with this channel. 1

flags 4
Bit mask of channel properties.

See Channel property bit flags.

settling_time 4 milliseconds

RBR#0014818revB 112

Item Size
(bytes) Comment

read_time 4 milliseconds (intended to apply only to power-cycled, 'normal' sampling.)

guard_time 4 milliseconds - time for which the power must remain off once it has been removed.

specifics_count 2 Number of channel-specific information items following calibration coefficients.

specifics_offset 2 Offset in bytes from beginning of section to first channel-specific item.

The following are fixed-size items relating to calibration.

equation 32
Fixed length character array giving the name of the calibration equation used for
this channel; up to 31 printable characters terminated with a NUL (0) character.

See Channel equation types.

calibration_date 8 Format: Unix epoch milliseconds

user_offset 4 float32, default 0.0.

user_slope 4 float32, default 1.0.

factory_units 16 NUL-terminated string for display of units, 0xFF-padded - units used by RBR for
Factory calibration, not user-modifiable.

user_units 16 NUL-terminated string for display of units, 0xFF-padded - potentially user-
specified, for future use; same as factory_units unless modified.

coefficient_count 4
Enhanced to assist with navigation.

See Coefficient count breakdown.

Actual calibration coefficients: total size of coefficient storage is not fixed.

coefficient_c0 4

The C and X coefficients are single precision IEEE floating point numbers.

The N cross-reference indicators are signed 32-bit integers.

coefficient_c1 4

... ...

coefficient_nN 4

Total size of storage for channel-specific information is not fixed: if 'specifics_count' (above) is zero, there will be
nothing here.

RBR#0014818revB 113

Item Size
(bytes) Comment

Channel-specific item
#1 (if any) variable

There are various types of information required only for a particular type of
channel and which do not apply to other types; these are referred to as "channel;-
specific" items. Storage requirements for these items vary widely because the
information is so diverse.

See Channel specific items.

Channel-specific item
#2 variable Details of the 2nd item which is specific to this channel, as above for 1st item.

...

Channel-specific item
#N variable Details of the Nth item which is specific to this channel, as above for 1st item.

CRC 2 A standard 16b CRC of all Section 9.2.1.

1 Bit flags for any items associated with this channel but which are NOT used by this configuration are not set.

4.3.10.2.1 Channel property bit flags

Bit Description

b00 unused

b01 Uses MAX11210 A/D converter.

b02 Supports gain switching.

b03 Channel is derived.

b04 High resolution data

b05 Can control Wi-Fi, cast detection, ddsampling.

b06 Can control regimes.

b07 Can be conductivity reference for cast detection.

b08 Must handle a long read-time (will likely become redundant).

b09 Temperature used for conductivity correction.

b10 Is a temperature channel.

RBR#0014818revB 114

Bit Description

b11 Is an FE-freq channel.

b12 Requires 12V supply for sensor.

b13 Requires extended power-down sequence, uses READY/*BUSY mechanism.

b14 Takes special actions at start and/or end of deployment.

b15 Validity depends on hardware revision.

4.3.10.2.2 Channel equation types

Name Description

corr_cond3 corr_cond3 - Conductivity corrections for RBRLegato and 6000dbar C and CT cell

corr_irr corr_irr - Irradiance

corr_irr2 corr_irr2 - generic irradiance and PAR

corr_metsmeth corr_metsmeth - Temperature correction of METS methane output

corr_metstemp corr_metstemp - Temperature measured by a METS (methane sensor)

corr_o2conc_ga
rcia corr_o2conc_garcia - O2 concentration compensated for salinity and pressure

corr_ph corr_pH - Simple temperature correction of pH

corr_pres2 corr_pres2 - Temperature correction of Pressure

corr_rinkob2 corr_rinkoB2 - Correction of Rinko Dissolved Oxygen using Rinko Temperature sensor

corr_rinkotemp corr_rinkotemp - Temperature measured by a Rinko DO sensor

cub cub, or Cubic

deri_bprpres deri_bprpres and deri_bprtemp, BPR channels

deri_bprtemp deri_bprpres and deri_bprtemp, BPR channels

deri_depth depth - derivation of depth from pressure

deri_dyncorrS deri_dyncorrT and deri_dyncorrS dynamic correction channels

RBR#0014818revB 115

https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13831562&linkCreation=true&spaceKey=GEN4CR&title=Example+21%3A+corr_cond3+-+Conductivity+corrections+for+RBRLegato+and+6000dbar+C+and+CT+cell
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13831566&linkCreation=true&spaceKey=GEN4CR&title=Example+23%3A+corr_irr+-+Irradiance
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13828494&linkCreation=true&spaceKey=GEN4CR&title=Example+24%3A+corr_irr2+-+generic+irradiance+and+PAR
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828651/corr_metsmeth+-+temperature+correction+of+METS+methane+output
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13828647/corr_metstemp+-+temperature+measured+by+a+METS+methane+sensor
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13831512/corr_pH+-+simple+temperature+correction+of+pH
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13831520&linkCreation=true&spaceKey=GEN4CR&title=Example+3%3A+corr_pres2+-+Temperature+correction+of+Pressure
https://docs-rbr.atlassian.net/wiki/x/cg3T
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13831497/corr_rinkotemp+-+temperature+measured+by+a+Rinko+DO+sensor
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13829828&linkCreation=true&spaceKey=GEN4CR&title=Example+15%3A+deri_bprpres+and+deri_bprtemp%2C+BPR+channels
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13829828&linkCreation=true&spaceKey=GEN4CR&title=Example+15%3A+deri_bprpres+and+deri_bprtemp%2C+BPR+channels
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13831573&linkCreation=true&spaceKey=GEN4CR&title=Example+25%3A+deri_dyncorrT+and+deri_dyncorrS+dynamic+correction+channels

Name Description

deri_dyncorrT deri_dyncorrT and deri_dyncorrS dynamic correction channels

deri_o2sat_garci
a deri_o2sat_garcia, Derived O2 saturation from concentration

deri_salinity pss78 - derivation of Practical Salinity (1978)

deri_seapres seapres - derivation of sea pressure from pressure

deri_sos deri_sos, speed of sound

deri_speccond deri_speccond - derivation of specific conductivity

lin lin, or Linear

lind Same as lin, or Linear but using double precision arithmetic, for high resolution channels (e.g. FE-
freq).

none

optic2 optic2 - optical parameters measured by a Satlantic OCR sensor

qad qad, or Quadratic

4.3.10.2.3 Coefficient count breakdown

Bit Description

b00...b0
7 Total number of coefficients.

b08...b1
5 Number of C coefficients.

b16...b2
3 Number of X coefficients.

b24...b3
1 Number of N cross-references.

RBR#0014818revB 116

https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13831573&linkCreation=true&spaceKey=GEN4CR&title=Example+25%3A+deri_dyncorrT+and+deri_dyncorrS+dynamic+correction+channels
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13828492&linkCreation=true&spaceKey=GEN4CR&title=Example+18%3A+deri_o2sat_garcia%2C+Derived+O2+saturation+from+concentration
https://docs-rbr.atlassian.net/wiki/pages/createpage.action?fromPageId=13829825&linkCreation=true&spaceKey=GEN4CR&title=Example+13%3A+deri_sos%2C+speed+of+sound
https://docs-rbr.atlassian.net/wiki/spaces/GEN4CR/pages/13831504/optic2+-+optical+parameters+measured+by+a+Satlantic+OCR+sensor

4.3.10.2.4 Channel specific items

Item Size
(bytes) Description

item_typ
e 1 An enumerated code for the type of information.

item_size 2 Total size of item in bytes.

item_spa
re 2 Unused

item_dat
a variable

Currently three types of information are supported:

 Gain switching data (item_type = 3)
 Frequency settings (item_type = 128)
 Sensor key-value pairs (item_type = 2)

Gain switching data
item_type = 3

Item Size
(bytes) Description

mode 1 Gain switching mode, none=0, manual=1, auto=2.

gain_count 1 Number of gain settings available.

current_gain_v
alue 4 float, gain value in use, minimum gain if auto-ranging.

all_gain_values 4 *
gain_count floats, values of all gains

Frequency settings
item_type = 128

Item Size
(bytes) Description

integration_tim
e 4 milliseconds

meas_average 1 For over-sampling; sample count

settling_time 2 milliseconds

interp_cos[] 8 Array of 4 signed 16b integers, internal coefficients

RBR#0014818revB 117

Item Size
(bytes) Description

pot_setting 1 Setting of digital frequency-trimming

xtal_settling 2 milliseconds

cal_date 8 calibration date in Unix epoch milliseconds

Sensor key-value pairs
item_type = 2

Item Size
(bytes) Description

key_name variable NUL-terminated string, length arbitrary, but 0xFF-padded to a multiple of 4 bytes if
needed.

value_string variable NUL-terminated string, length arbitrary, but 0xFF-padded to a multiple of 4 bytes if
needed.

4.4 Event data storage format

4.4.1 Layout
Each event stored in memory occupies 24 bytes and has the following layout.

Timestamp Schedules Size Type Auxiliary

64 bits (8 bytes) 32 bits (4 bytes) 16 bits (2 bytes) 16 bits (2 bytes) 64 bits (8 bytes)

All individual data items are stored in memory in little-endian format (least significant byte at lower address).
Descriptions follow below.

Timestamp: a 64-bit count of milliseconds elapsed since 1970/01/01 00:00:00, commonly referred to as the Unix epoch.
It accounts for leap years, but not leap seconds, time zones or any other adjustments. Note that although the Unix
epoch is used as a reference point, the time does not conform exactly to the definition of "Unix time", which is
measured in seconds.

Schedules: a 32-bit mask indicating which schedule(s) the event applies to by the schedule's internal reference, an
integer in the range 1 to 32. Bit-0 =1 for Schedule 1, Bit-1 = 1 for Schedule 2, and so on.

Size: a 16-bit value that gives the size of the complete event in bytes. Currently the value is always 24, but different
event sizes may be supported in the future.

Type: a 16-bit lookup index indicating what kind of event this is.

Auxiliary: an 8-byte array of supplementary data, some or all of which may be unused. The content depends on the
event Type. Currently, there are always 8 bytes; any unused bytes are at the end of the array and 'padded' with a value
of 0xFF (255).

RBR#0014818revB 118

https://en.wikipedia.org/wiki/Unix_time

4.4.2 Event types and auxiliary data

Type Hex Description Auxiliary data

0 0x00 Unknown or unrecognized events

1 0x01 reserved

2 0x02 disable command received

3 0x03 Run-time error encountered [2-byte filename hash code], [2-byte line number], [0xFF],
[0xFF], [0xFF], [0xFF]

4 0x04 CPU reset detected

5 0x05 One or more parameters recovered
after reset

6 0x06 Restart failed: real-time clock (RTC)/
calendar contents not valid

7 0x07 Restart failed: logger status not valid

8 0x08 Restart failed: primary schedule
parameters could not be recovered

9 0x09 Unable to load alarm time for next
sample

10 0x0A Sampling restarted after resetting
RTC

11 0x0B Parameters recovered; sampling
restarted after resetting RTC

12 0x0C Sampling finished: deployment end
time reached

13 0x0D reserved

14 0x0E reserved

15 0x0F Power source switched to USB

16 0x10 reserved

17 0x11 reserved

RBR#0014818revB 119

https://docs.rbr-global.com/display/L4DOC/disable

Type Hex Description Auxiliary data

18 0x12 reserved

19 0x13 reserved

20 0x14 reserved

21 0x15 reserved

22 0x16 Power source switched to internal
battery

23 0x17 Power source switched to external
battery

24 0x18 reserved

25 0x19 reserved

26 0x1A reserved

27 0x1B reserved

28 0x1C Regimes enabled, but not yet in a
regime

29 0x1D Entered regime 1

30 0x1E Entered regime 2

31 0x1F Entered regime 3

32 0x20 End of regime bin

33 0x21 reserved

34 0x22 reserved

35 0x23 reserved

36 0x24 Battery failed, schedule finished

37 0x25 reserved

38 0x26 reserved

RBR#0014818revB 120

Type Hex Description Auxiliary data

39 0x27 reserved

40 0x28 reserved

41 0x29 reserved

42 0x2A reserved

43 0x2B reserved

44 0x2C reserved

45 0x2D Regimes; passed final boundary

RBR#0014818revB 121

5 Channel labels
Channel labels are short strings describing the physical parameter measured. These names are used by the channel
command.

A label consists of a dedicated prefix and then a 2 digit unique identifier to ensure that all labels in an instrument are
unique.

Below are a list of prefixes used by different channel types.

Parameter Channel type Label prefix

Backscatter (RBRtridente)

turb14

turb22

turb24

backscatter_

Chlorophyll (RBRtridente) fluo43 chlorophyll_

Conductivity

cond13

cond17

cond19

cond20

cond21

cond22

cond23

cond24

cond25

cond26

conductivity_

Count (Regimes bin) cnt_00 count_

Depth dpth01 depth_

Dissolved Oxygen concentration (RBRcoda
T.ODO)

doxy23

doxy27

doxy28

doxy33

doxy36

oxygenconcentration_

RBR#0014818revB 122

Parameter Channel type Label prefix

Dissolved Oxygen phase (RBRcoda T.ODO)

opt_07

opt_14

opt_15

opt_24

opt_35

odophase_

Dissolved Oxygen saturation (RBRcoda
T.ODO) doxy22 oxygensaturation_

Dissolved Oxygen temperature (RBRcoda
T.ODO)

temp16

temp17

temp24

temp37

temp51

odotemperature_

Irradiance (BRRcoda rad) irr_06 irradiance_

Irradiance (RBRquadrante) irr_08 irradiance_

PAR (BRRcoda PAR) par_06 par_

PAR (RBRquadrante) par_08 par_

Pressure pres24 pressure_

Salinity sal_00 salinity_

Salinity (dynamically corrected) sal_01 salinitydyncorr_

Sea pressure pres08 seapressure_

RBR#0014818revB 123

Parameter Channel type Label prefix

Temperature

temp14

temp19

temp26

temp27

temp32

temp33

temp36

temperature_

Temperature (Conductivity cel)
temp22

temp34
conductivitycelltemperature_

Temperature (Dynamically corrected) temp38 temperaturedyncorr_

Turbidity (RBRtridente)
turb12

turb13
turbidity_

Turbidity (RBRcoda Tu) turb19 turbidity_

Turbidity OBS (RBRcoda Tu) turb20 turbidity_obs_

RBR#0014818revB 124

6 Calibration equations and cross-channel dependencies
In the following section, the various equations available in the instrument are described. Some equations applied to a
channel are straightforward (like the linear equation or the temperature equation). Others might refer to other channel
readings (cross-channel dependencies) to correct various physical effects (for example, conductivity with pressure and
temperature correction). Others are for purely derived channels (for example, the derivation of practical salinity).
For each equation, the following will describe the coefficients used (c and x group of parameters of the calibration
command) and the cross-channel dependencies required (n group of parameters of the calibration command).

The primary input to most equations is the raw reading of the channel (sometimes referred to as R, a raw number
normalized to a nominal full scale of 1). This is typically a binary reading from an A/D converter divided by a full-scale
value of 230, and so is often referred to as a “voltage ratio”. It might also be an internally normalized reading of a digital
sensor (external or internal).

6.1 lin - linear equation

6.2 cub - cubic equation

6.3 qad - quadratic equation

6.4 tmp - temperature
Given in °C, based on the Steinhart-Hart equation used for thermistors.

where

and

Examples

>> calibration temperature_00 equation
<< channel temperature_00 equation=tmp

RBR#0014818revB 125

Confirm the equation type.

>> calibration temperature_00
<< calibration temperature_00 datetime=20251001000000 equation=tmp offset=0.0000000e+000
 slope=1.0000000e+000 c0=3.4652630e-003 c1=-251.34581e-006 c2=2.4693230e-006
 c3=-78.103464e-009

Request confirmation of all calibration coefficients.

6.5 corr_pres2 - pressure with temperature correction
For an analogically interfaced pressure transducer, the pressure reading without correction for the effect of
temperature on the sensor, is given by a cubic polynomial:

where R is the normalized voltage ratio read by the ADC monitoring pressure, c0...c3 are the core coefficients of the
cubic polynomial equation, and Praw is the uncorrected pressure output, reported in dbar for RBR instruments.

The equation which accounts for residual temperature sensitivity of the pressure sensor is:

Casting this into the form used by the logger would yield:

where

 Praw is the cubic polynomial in R, as before.
 x0 is the calibration pressure 'Pcal' in dbar.
 x1, x2, x3, x4 correspond directly to the constants "Kp1" through "Kp4".
 x5 is the calibration temperature "Tcal" in °C.
 n0 is the label of the temperature channel near the transducer "T", in the examples pressuretemperature_00

value(n0) is the final output value of the temperature channel in °C.
 Pcorr is the corrected output in dbar.

Examples

>> calibration pressure_00 datetime=20251001000000 c0=0.2346 c1=120.9873 c2=2. 7356
c3=0.7

Set the core coefficients.

>> calibration pressure_00 datetime=20251001000000 x0=9.983 x1=0.2003 x2=0.2943
x3=0.0721 x4=0.1049 x5=21.29

Set the cross-channel correction coefficients.

RBR#0014818revB 126

>> calibration pressure_00
<< calibration pressure_00 datetime=20251001000000 equation=corr_pres2
offset=0.0000000e+000 slope=1.0000000e+000 c0=0.2346 c1=120.9873 c2=2 7356 c3=0.7
x0=9.983 x1=0.2003 x2=0.2943 x3=0.0721 x4=0.1049 x5=21.29 n0=pressuretemeprature_00

Request confirmation of all calibration coefficients.

6.6 corr_cond3 - conductivity with pressure and temperature correction
The conductivity reading from the conductivity channel without corrections is given by a simple linear function:

where R is the normalized voltage ratio from the channel monitoring conductivity, c0, c1 are the core coefficients of the
linear equation, along with c2 which is a geometrical factor (K-factor) reflecting the final installation of conductivity cell,
and Craw is the uncorrected conductivity output, reported in mS/cm for RBR marine instruments.

The equation which corrects the output for the effects of both temperature and pressure on the conductivity cell is:

Casting the equation into the style used by the logger would give:

where

 Craw is the uncorrected conductivity, c0 + c1 × c2 × R.
 x0, x1 correspond respectively to the temperature compensation constants "Kc1", "Kc2".
 x2, x3, x4 correspond respectively to the pressure compensation constants "Kp1", "Kp2", "Kp3".
 x5 is the calibration temperature "Tcal" in °C.
 x6 is the calibration pressure "Pcal" in dbar.
 n0 is the label of the internal temperature of the conductivity cell channel in °C, in the examples

conductivitycelltemperature_00.
value(n0) is the final output value of the internal temperature of the conductivity cell channel in °C.

 n1 is the label of the pressure channel, in the examples pressure_00.
value(n1) is the final output value of the pressure channel in dbar.

 Ccorr is the corrected output in mS/cm.

It is quite common to have a logger monitoring conductivity and temperature without a pressure channel, typically
deployed at a known, constant depth. In this case, n1 would be set to "value", and so value(n1) would be substituted
by a default value (see the "parameters pressure" command).

Examples

>> calibration conductivity_00 datetime=20251001000000 c0=0.2346 c1=153.4873 c2=1.0001

Set the core coefficients.

RBR#0014818revB 127

>> calibration conductivity_00 datetime=20251001000000 x0=0.2003 x1=0.2943 x2=0.005
x3=0.085 x4=0.0001 x5=15.0280 x6=10.0025

Set the cross-channel correction coefficients.

>> calibration conductivity_00
<< calibration conductivity_00 datetime=20251001000000 equation=corr_cond3
offset=0.0000000e+000 slope=1.0000000e+000 c0=16.552176e-003 c1=157.61278e+000
c2=1.0000000e+000 x0=0.0000000e+000 x1=0.0000000e+000 x2=0.0000000e+000
x3=0.0000000e+000 x4=0.0000000e+000 x5=0.0000000e+000 x6=10.000000e+000
n0=conductivitycelltemperature_00 n1=pressure_00

Request confirmation of all calibration coefficients.

6.7 deri_seapres - derivation of sea pressure from absolute pressure
The sea pressure (also referred to as hydrostatic pressure) is simply the difference between pressure measured
underwater and atmospheric pressure.

In the form used by the logger, using an RBRconcerto³ C.T.D as an example, this becomes:

 n0 is the label of the pressure channel, pressure_00 in the example.
 n1 is the label of the atmospheric pressure channel; not present in the example (default value, refer to

parameters atmosphere).

Examples

>> calibration seapressure_00 equation
<< channel seapressure_00 equation=deri_seapres

Confirm the equation type.

>> calibration seapressure_00
<< calibration seapressure_00 datetime=20251001000000 equation=deri_seapres
offset=0.0000000e+000 slope=1.0000000e+000 n0=pressure_00 n1=value

Request confirmation of all calibration coefficients.

6.8 deri_depth - derivation of depth from absolute pressure
This derived channel implements a simplified equation for water depth in meters, in which no account is taken of either
geographical variations in the Earth's gravitational field, or the variation of water density with depth: both these
quantities are treated as constants.

RBR#0014818revB 128

In the form used by the logger, using an RBRconcerto³ C.T.D as an example, this becomes:

where

 n0 is the label of the pressure channel, pressure_00 in the example.
 n1 is the label of the atmospheric pressure channel; not present in the example (default value, refer to

parameters atmosphere).
 p is the value set for the density of water using the "parameters density" command, g is a fixed constant

0.980665, representing the standard value of acceleration due to gravity, in units which correctly account for
pressures being measured in decibars.

 Dm is the calculated depth in meters.

Examples

>> calibration depth_00 equation
<< channel depth_00 equation=deri_depth

Confirm the equation type.

>> calibration depth_00
<< calibration depth_00 datetime=20251001000000 equation=deri_depth
offset=0.0000000e+000 slope=1.0000000e+000 n0=pressure_00 n1=value

Request confirmation of all calibration coefficients.

6.9 pss78 - derivation of practical salinity
The equation relating salinity to conductivity, temperature and pressure is the Practical Salinity Scale of 1978, often
referred to as PSS78 (see Practical salinity of seawater). If the salinity calculation leads to an aberrant value, which
generally happens when the conductivity sensor is in the air and reads a slightly negative value, the logger will saturate
the salinity value to zero instead of generating an error.

Salinity is a “pure” derived parameter which has its own channel assigned to it, but there is no underlying measurement
hardware for salinity itself; it simply uses the outputs of the conductivity, temperature and pressure channels. This
makes its specification rather sparse: there are no coefficients in either of the “c” or “x” groups; all that is needed is to
specify the indices in the “n” group.

Because hydrostatic pressure is used in the salinity equation, it also accommodates the presence of a channel to
measure atmospheric pressure.

In our example:

 n0 is the label of the temperature channel, temperature_00 in this example.
 n1 is the label of the absolute pressure channel, pressure_00 in this example.
 n2 is the label of the conductivity channel, conductivity_00 in this example.
 n3 is the label of the atmospheric pressure channel; not present in this example, so set to "value".

RBR#0014818revB 129

Examples

>> channel salinity_00 equation
<< channel salinity_00 equation=deri_salinity

Confirm the equation type.

>> calibration salinity_00
<< calibration salinity_00 datetime=20251001000000 equation=deri_salinity
offset=0.0000000e+000 slope=1.0000000e+000 n0=temperature_00 n1=pressure_00
n2=conductivity_00 n3=value

Request confirmation of all calibration coefficients.

It is not uncommon to monitor salinity using a logger with only conductivity and temperature (C.T) channels deployed
at a constant depth. In this case, we might have:

>> calibration salinity_00
<< calibration salinity_00 datetime=20251001000000 equation=deri_salinity
offset=0.0000000e+000 slope=1.0000000e+000 n0=temperature_00 n1=value n2=conductivity_00
n3=value

6.9.1 Practical salinity of seawater
Since it is not possible to directly measure the absolute salinity of seawater (the ratio of the mass of dissolved material
to the mass of seawater), it is necessary to work in terms of practical salinity, which can be determined from
measurable properties of seawater.

This is defined in "Algorithms for computation of fundamental properties of seawater", by N. P. Fotonoff and R. C.
Millard Jr.:

The practical salinity, symbol S, of a sample of sea water, is defined in terms of the ratio K of the electrical
conductivity of a sea water sample of 15°C and the pressure of one standard atmosphere, to that of a potassium
chloride (KCl) solution, in which the mass fraction of KCl is 0.0324356, at the same temperature and pressure. The K
value exactly equal to one corresponds, by definition, to a practical salinity equal to 35.

The practical salinity of seawater can be calculated from three measurable parameters: electrical conductivity,
temperature, and pressure. Each of the three parameters is necessary for the salinity calculation since the electrical
conductivity of seawater changes with temperature and pressure. Electrical conductivity of seawater is dependent
upon the number of dissolved ions per volume (salinity), as well as the mobility of those ions (affected by temperature
and pressure). The accuracy of the salinity 'measurement' depends on the accuracy to which the three principal
parameters can be measured.

The Practical Salinity Scale of 1978, endorsed by UNESCO/IAPSO, is currently the world standard for salinity calculation.
It is used by all RBR CTD instruments and software for the calculation of seawater salinity, using the equations given
below; these are taken from "IEEE Journal of Oceanic Engineering", Vol. OE-5, No. 1, January 1980, page 14. Practical
salinity, S, is given by:

If the PSS78 calculation generates an error, the datalogger will report a salinity of 0. This might occur when, in
air, the conductivity reports a small negative value. This does not apply if one of the parameters is already
flagged as an error.

RBR#0014818revB 130

where ΔS is a temperature correction term given by:

where Fn(RT) is the polynomial function:

and T is the in-situ temperature according to the International Temperature Scale of 1968 (ITS-68). All RBR loggers and
software use the more recent ITS-90 scale, but make the simple conversion to ITS-68 for salinity calculations.

RT is a term representing a ratio of conductivities, with further corrections applied for temperature and pressure:

R is the ratio of the conductivity of the sample of seawater (measured by the logger) to the conductivity of standard
seawater at S = 35, T = 15ºC, and P = 0: Conductivity(35, 15, 0) = 42.914 mS/cm.

Rp and rT are correction terms to adjust for in-situ pressure and temperature respectively:

where P is the in-situ hydrostatic pressure measured in bars (RBR loggers and software account for the conversion from
decibars).

The table below gives all the coefficients required in all the above equations. These values have been empirically
determined, and are fixed: they do not need to be programmed into a data logger in any way by end users.

Table 1. Coefficients for the PSS78 equations

a b c d e

0 0.0080 0.0005 0.6766097

1 -0.1692 -0.0056 2.00564e-2 3.426e-2 2.070e-5

RBR#0014818revB 131

a b c d e

2 25.3851 -0.0066 1.104259e-4 4.464e-4 -6.370e-10

3 14.0941 -0.0375 -6.968e-7 0.4215 3.989e-15

4 -7.0261 0.0636 1.0031e-9 -3.107e-3

5 2.7081 -0.0144

6.10 deri_dyncorrT and deri_dyncorrS - derivation of practical salinity
with dynamic correction

There are two types of dynamic errors affecting salinity measurements: response time and sensor misalignments, and
thermal mass errors.

"Response time and sensor misalignments", or "C-T lag", refers to the time lag between temperature and conductivity
measurements, which would result in "salinity spiking". It is generated by two separate mechanisms: the physical
separation between the thermistor and the conductivity cell, and the inherent response time of the thermistor.

"Thermal mass errors" refers to the thermal mass of the conductivity cell impacting the temperature of the water
column where the seawater conductivity is measured. It occurs when the CTD travels through a temperature gradient.
Thermal mass errors present two main separate timescales: a long-term thermal mass error (timescales of minutes) and
a short-term thermal mass error (timescales of seconds).

In order to correct all those dynamic errors, the logger provides two channels that implement the dynamic correction
equations. They rely on two types of equations: deri_dyncorrT (temperature in °C) and deri_dyncorrS (salinity in PSU).

6.10.1 deri_dyncorrT equation
If the sample is acquired or polled while actively logging at a sampling rate greater or equal to 1Hz,

Otherwise

The C-T lag correction and the short-term thermal mass correction are only applied when the sample is
acquired while the instrument is actively logging at a sampling rate of at least 1Hz.
The long-term thermal mass correction is only applied when the sample is acquired while the instrument is
actively logging at a sampling rate of at least 0.1Hz.

RBR#0014818revB 132

where

 Tcor is the C-T lag corrected temperature (°C).
 Tmeas is the marine temperature (°C).
 Fs is the sampling frequency (Hz).
 Δt is the C-T lag correction (s).

deri_dyncorrT coefficients name coefficient name implemented

Δt x0

 n0 is the label of the supporting marine temperature channel (n0=temperature_00 in the examples below).
value(n0) is the final output value of this channel in degree Celsius, i.e Tmeas.

6.10.2 deri_dyncorrS equation

with

and

where

and

RBR#0014818revB 133

If the sample is polled or not acquired while actively sampling at a rate faster or equal to 1Hz,

If the sample is polled or not acquired while actively sampling at a rate faster or equal to 0.1Hz,

where:

 fN is the Nyquist frequency, defined as half the sampling rate Fs.
 α(n) is the magnitude of short-term thermal mass correction and depends on the instantaneous ascent rate.
 τ(n) is the time constant of short-term thermal mass correction (s) and depends on the instantaneous ascent

rate.
 ctcoeff(n) is the magnitude of the long-term thermal mass correction and depends on the instantaneous ascent

rate.

deri_dyncorrS coefficients name coefficient name implemented

αa x0

αe x1

τa x2

τe x3

ctcoeffa x4

ctcoeffe x5

Vpmin x6

Vpmax x7

Vpfc x8

 n0 is the label of the conductivity channel. (n0=conductivity_00 in examples below).
value(n0) is the final output value of this channel in mS/cm, i.e. C.

 n1 is the label of the sea pressure channel. (n1=seapressure_00 in examples below).
value(n1) is the final output value of this channel in dbar i.e. P.

 n2 is the label of the C-T lag corrected temperature channel. (n2=temperature_01 in examples below).
value(n2) is the final output value of this channel in °C, i.e. Tcor .

 n3 is the label of the internal temperature of the conductivity cell channel. (n3=conductivitytemperature_00 in
examples below).

RBR#0014818revB 134

value(n3) is the final output value of this channel in °C, i.e. Tcond.
Examples

>> calibration temperature_00 datetime= 20251001000000 x0=0.3500
<< calibration temperature_00 datetime= 20251001000000 x0=0.3500

Set the temperature coefficients.

>> calibration salinity_00 datetime=20251001000000 x0=0.1300 x1=5.9000 x2=1.0200e-00
<< calibration salinity_00 datetime=20251001000000 x0=0.1300 x1=5.9000 x2=1.0200e-00

Set the salinity coefficients provided.

>> calibration temperature_01
<< calibration temperature_01 datetime=20251001000000 equation=deri_dyncorrT
offset=0.0000000e+000 slope=1.0000000e+000 x0=0.3500 n0=temperature_00

>> calibration salinity_01
<< calibration salinity_01 datetime=20251001000000 equation=deri_dyncorrS
offset=0.0000000e+000 slope=1.0000000e+000 x0=0.3700 x1=-1.0300 x2=16.0200 x3=-0.2600
x4=0.1400 x5=-1.0000 x6=0.0400 x7=0.0500 x8=0.1500 n0=conductivity_00 n1=seapressure_00
n2=temperature_01 n3=conductivitytemperature_00

6.11 corr_o2conc_garcia - O2 concentration compensated for salinity and
pressure

When an instrument is connected to an RBRcoda³ T.ODO, the latter transfers both the foil temperature and the
dissolved oxygen concentration (not compensated for salinity). The instrument then calculates the oxygen
concentration compensated for salinity and pressure:

where

 O2corr is the corrected O2 concentration, compensated for salinity and pressure.
 O2unc is the uncompensated O2 concentration returned by the RBRcoda³ T.ODO.
 C0 and C1 are corrections and scaling factors for the uncompensated O2 concentration.
 C2 is a correction factor for pressure.
 S is the salinity in PSU.
 P is sea pressure in dbar.

and

where T is the water temperature (in °C), and

RBR#0014818revB 135

which correspond to Garcia and Gordon coefficients.

The corresponding logger coefficients are:

 c0 is C0
 c1 is C1
 c2 is C2
 n0 is the label of the water temperature channel
 n1 is the label of the salinity channel
 n2 is the label of the pressure channel
 n3 is the label of the atmospheric pressure channel (set to value to use parameters atmosphere)

Examples

>> calibration oxygenconcentration_00
<< calibration oxygenconcentration_00 datetime=20171201000000 offset=0.0000000e+000
slope=1.0000000e+000 c0=0 c1 = 1 c2=3.25e-5 n0=temperature_00 n1=salinity_00
n2=pressure_00 n3=value

Request confirmation of all calibration coefficients.

6.12 deri_o2sat_garcia - derivation of O2 saturation from concentration
When an instrument is connected to an RBRcoda³ T.ODO. The RBRcoda³ T.ODO transfers both the foil temperature and
the dissolved oxygen concentration (not compensated for salinity). The instrument calculates the concentration
compensated for salinity first, then the air saturation (in %) via the following equation:

where

 Cc is the concentration in μMol/L, compensated for salinity.
 Patm is atmospheric pressure.
 Pav is air vapour pressure.

Solubility is calculated via Gordon and Garcia as

RBR#0014818revB 136

where S is the salinity in PSU and Ts is defined as

with T being the water temperature in °C and

Air vapour pressure (in dbar) is calculated as

The corresponding logger coefficients are:

 n0, the label of the concentration channel, already compensated for salinity.
 n1, the label of the water temperature channel.
 n2, the label of the salinity channel.
 n3, the label of the atmospheric pressure channel (set to value in order to use parameters atmosphere).

Examples

>> calibration oxygensaturation_00
<< calibration oxygensaturation_00 datetime=20171201000000 offset=0.0000000e+000
slope=1.0000000e+000 n0=oxygenconcentration_00 n1=temperature_00 n2=salinity_00 n3=value

Request confirmation of all channel indices.

6.13 deri_sos - derivation of speed of sound
Full, in-situ derivation of speed of sound requires salinity, hydrostatic pressure and temperature. The equation used in
the logger relating speed of sound to the three underlying parameters is the Chen and Millero equation reviewed by
Wong and Zhu, often referred to as UNESCO equation. For further information about this equation, please refer to the
paper: G.S.K. Wong and S. Zhu, Speed of sound in seawater as a function of salinity, temperature and pressure (1995) J.
Acoust. Soc. Am. 97(3) pp 1732-1736.

The equation is a series of polynomials combined in various ways: the coefficients are all empirically determined
constants, and all values are embedded in the logger.

RBR#0014818revB 137

Speed of sound is a “pure” derived parameter which has its own channel assigned to it, but there is no underlying
measurement hardware for speed of sound itself; it simply uses the outputs of the salinity, temperature and hydrostatic
pressure channels. There are no coefficients in either of the c or x groups; all that is needed is to specify the indices in
the n group.

In our example:

 n0 is the label of the temperature channel, temperature_00 in this example
 n1 is the label of the sea pressure channel, seapressure_00 in this example
 n2 is the label of the salinity channel, salinity_00 in this example.

Examples

>> calibration speedofsound_00
<< calibration speedofsound_00 datetime=20251001000000 equation=deri_sos
offset=0.0000000e+000 slope=1.0000000e+000 n0=temperature_00 n1=seapressure_00
n2=salinity_00

Request confirmation of all channel indices.

6.14 deri_speccond - derivation of specific conductivity
This equation permits conductivity readings taken in different environments to be compared by correcting them to a
standard environment at 25°C. Specific conductivity is usually of greater interest in fresh water applications, and is by
convention always reported in μS/cm, although the parameter does apply to salt water as well. The equation
which corrects for temperature to derive specific conductivity from standard conductivity is given below. It is
associated with the scon00 derived channel type.

where

 Ccorr is the standard conductivity reading (already compensated for temperature dependence of the
measurement circuit as described in corr_cond3).

 T is the temperature used for correction, in °C.
 K0 is a units correction factor.
 K1 is a temperature coefficient.

In the calibration settings for the scon00 derived channel type, the channel cross-reference label for Ccorr is given by
n0, and for T by n1.

K0 has a value of 1 if the Ccorr channel is in μS/cm, or a value of 1000 if Ccorr is in mS/cm. The logger can deduce this
from the units of the Ccorr channel; an explicit coefficient is not needed.

K1 depends on the ionic composition of the water being monitored, and typically has a value in the range 0.0191 to
0.0214. The lower end of this range is suitable for KCl solutions, the higher end for NaCl solutions. The value used by
the logger can be queried and modified via the parameters command, using the speccondtempco parameter. If this
parameter is never explicitly set, the default value used is 0.0191.

RBR#0014818revB 138

7 Information, warning, and error codes
This is a current, but partial, list of error messages which the logger can produce when responding to issued
commands. Each error message begins with either ERR- (for errors) or WRN- (for warnings), followed by a 3-digit
decimal number, padded with leading zeroes if necessary. An (currently fictitious) example would be ERR-065.

The number allows host software to interpret the error code as desired if the rather terse messages from the logger are
unsuitable for any reason.

Note that some messages may contain a variable element, represented here by a ‘<place_holder>’.

The errors have been categorized according to their very broad root cause, which will be one of the following:

 Wrong usage - incorrect specification of the command or one of its parameters, or inappropriate use of a
parameter value.

 Change in instrument condition - an previously valid operation can no longer be performed because the state of
the instrument has changed in some way.

 Factory misconfiguration - the instrument’s internal settings are in an unexpected state.
 Hardware failure - a problem with the instrument has prevented the command from succeeding. One possible

course of action to remedy this is to apply a full hardware reset (see Tips for system integrators).

7.1 List of error and warning messages

7.1.1 Warning

Code Text Description

WRN-305 storage access already at selected
location

The storage access command was sent to change to a
state the instrument is already in.

WRN-408 instrument was already enabled
The current deployment has not finished; no change will be
made to the instrument’s state, and all command
parameters will be ignored.

WRN-435 instrument state is already disabled The disable command was sent when the instrument is
already disabled.

7.1.2 Error

Error code Reported description Root cause

ERR-101 command parser busy Wrong usage

ERR-102 invalid command '<unknown-command-name>' Wrong usage

ERR-104 feature not yet implemented Wrong usage

ERR-105 command prohibited while logging Wrong usage

ERR-107 expected argument missing Wrong usage

RBR#0014818revB 139

Error code Reported description Root cause

ERR-108 invalid argument to command: '<invalid-argument>' Wrong usage1

ERR-109 feature not available Wrong usage

ERR-110 buffer full Wrong usage/Hardware failure

ERR-111 command failed Hardware failure

ERR-114 feature not supported by hardware Wrong usage

ERR-115 syntax error '<invalid-argument>' Wrong usage

ERR-116 parse error '<invalid-argument>' Wrong usage

ERR-117 '<invalid-qualifier>' is not a known qualifier Wrong usage

ERR-118 invalid qualifier '<invalid-qualifier>' Wrong usage

ERR-119 missing qualifier Wrong usage

ERR-120 '<label>' is already in use Wrong usage

ERR-121 no qualified objects Wrong usage

ERR-122 value '<value-entry>' is too long Wrong usage

ERR-123 '<value-entry>' is a keyword and cannot be used as a
value Wrong usage

ERR-124 '<value-entry>' cannot be set multiple times Wrong usage

ERR-125 '<parameter>' is read only Wrong usage

ERR-126 arguments result in ambiguous command Wrong usage

ERR-127 no value has been set Wrong usage

ERR-129 no more than <max_count> entries allowed in list Wrong usage

ERR-302 download tracking failed, specify all parameters Change in instrument condition

RBR#0014818revB 140

Error code Reported description Root cause

ERR-405 failed to enable for logging Hardware failure

ERR-406 cannot 'pause' while not logging Wrong usage

ERR-407 cannot 'resume' unless paused Wrong usage

ERR-410 no sampling channels active in group ‘<group-label>’ Wrong usage

ERR-411 period not valid for selected mode Wrong usage

ERR-413 period too short for serial streaming in schedule
'<schedule_label>' Wrong usage

ERR-416 wrong regimes settings Wrong usage

ERR-419 calibration coefficients are missing Factory misconfiguration

ERR-420 required channel is turned off Wrong usage

ERR-430 empty schedule list in configuration '<configuration-
label>' Wrong usage

ERR-431 dataset limit of '<max-count>' reached, delete dataset(s)
to make space Wrong usage

ERR-432 if simulating, only one schedule allowed Current L35 restriction, may be
lifted in future

ERR-433 no start time specified for gating by time Wrong usage

ERR-434 starttime accessible only if gating by time Wrong usage

ERR-436 instrument was already enabled with different settings Wrong usage

ERR-437 invalid argument ’<invalid-argument>', data storage is
not available Wrong usage

ERR-438 channels on sensor '<sensor-label>' split across
schedules Wrong usage

ERR-439 no sampling groups active in schedule
'<schedule_label>' Wrong usage

RBR#0014818revB 141

Error code Reported description Root cause

ERR-440 incompatible periods for schedules with common
channels, '<schedule_label_a>' and '<schedule_label_b>' Wrong usage

ERR-441 config '<config_label>' has too many channels/sensors
for given sampling rate(s) Wrong usage

ERR-442 config '<config_label>' streaming too much data for
current baud rate Wrong usage

ERR-501 item is not configured Factory misconfiguration

ERR-505 no channels configured Factory misconfiguration

ERR-601 no calibration for channel '<channel-index>' Factory misconfiguration

1Error ERR-108 is typically caused by the user supplying an incorrect argument to a command. However, it can also be
caused by supplying a valid argument in the wrong position for those commands that require some arguments to be in
a certain order. For example:

1. instrument power internal voltage is correct usage.
2. instrument power voltage internal is not.

RBR#0014818revB 142

8 Revision history

Revision No. Release Date Notes

A 13-February-2025 Initial Gen4 command reference release

B 9-October-2025

Corrected typo in Quick start.

Corrected clock section to indicate when the clock can be changed.

Percent added as special character added in Parameter naming
constraints.
all, erase and real critical parameter added to Parameter naming
constraints.

id command behaviour corrected.
id4 command added.
instrument dump command typo in description corrected.
pcba command examples corrected.
download command examples corrected.
sensor command updated.
pause command added.
resume command added.
tmp - temperature examples added.
deri_seapres - derivation of sea pressure from absolute pressure
examples updated.
deri_depth - derivation of depth from absolute pressure examples
updated.
pss78 - derivation of practical salinity examples updated.
corr_pres2 - pressure with temperature correction examples updated.
deri_dyncorrT and deri_dyncorrS - derivation of practical salinity with
dynamic correction examples updated.
deri_sos - derivation of speed of sound examples updated.
Information, warning, and error codes have been updated.

 ERR-441, and ERR-442 added

Deprecated the use of the derived parameter in the channel command.

RBR#0014818revB 143

9 Appendix
9.1 Critical parameter keywords which cannot be used as a label

above

absolute

address

aggregate

all

allindices

alllabels

allowed

altitude

ascii

ascending

atmosphere

auto

aux1

aux1_active

aux1_all

aux1_hold

aux1_setup

aux1_sleep

aux1_state

availablebaudrates

availablefastperios

availablegains

availablemodes

availableproperties

availabletypes

average

avgsoundspeed

eeprom

enable

enabled

endaction

encoding

endtime

episodelog

equation

erase

eraseall

erasing

error

eventcount

events

eventsize

eventstart

examine

external

factory

factoryperiodlimit

factoryunits

failed

false

fastperiod

fastthreshold

ebaud

fefreq

fefreq_sensor_settlin

period

period1

period2

period3

permission

permissions

permit

pn

poll

polling

pollpoweroffdelay

power

powerdownbusy

powerexternal

powerfail

powerinternal

poweroffdelay

powerondelay

presdyncorr

pressure

prompt

properties

qad

rapidfill

read

readdata

readtime

real

RBR#0014818revB 144

badresponse

batterytype

baudrate

below

ble

binary

binsize1

binsize2

binsize3

boundary1

boundary2

boundary3

bsl

buspwr

burst

burstcount

burstinterval

bytecount

bytestart

calfloat64

calibration

capacity

castdetection

cellcount

cellformat

channel

channellabel

channellist

channelorder

channels

cleanmemory

fefreq_xtal_settling

fepassthrough

filter

finalboundary

finished

flash

float32

float64

flush

fram

freq

full

fullandstopped

fw

fwlock

fwtype

fwversion

gain

gainswitch

gate

gated

getall

group

grouplist

groups

guardtime

hardwarefeaddress

help

hidden

high

highres

reboot

reference

reg

regimes

regimetrig

remaining

reset

resume

rs232

rs485f

rs485h

rtos

running

Ruskin

salinity

samplecount

samplesize

samplestart

sampling

save

schedule

scheduled

schedulelabel

schedulelist

schedules

scheduletype

seapressure

sensor

sensorchannel

sensorpoweralwayson

segmented

RBR#0014818revB 145

clearcount

clock

closed

coefficient

code

condition

condtemp

conductivity

config

configlist

configs

confirmation

continuous

command

corr_cond3

corr_irr

corr_irr2

corr_metsmeth

corr_metstemp

corr_o2conc_garcia

corr_ph

corr_pres2

corr_rinkoB2

corr_rinkotemp

count

crc

create

cub

data

dataset

datasetlist

hw

hwrev

id

ignore

inactive

index

info

inputtimeout

instrument

internal

interval

invalid

io

L2Flash

label

led

lin

lind

lines

link

list

lock

log

logging

low

max11210

maxcount

mcu

memoryusersize

meta

missing

serial

settings

settlingtime

sim0

sim1

sim2

sim3

simulateddata

simulation

size

sleep

sleepafter

sleeping

slope

slowperiod

slowthreshold

source

smerror

smtimeout

sn

speccondtempco

startaction

startimmediate

starttime

state

status

stopped

storage

storagemode

stream

streamserial

RBR#0014818revB 146

datasets

datatype

datetime

datetimeformat

ddsampling

default

delay

delete

delta

denied

density

deployment

deri_bprpres

deri_bprtemp

deri_depth

deri_dyncorrS

deri_dyncorrT

deri_o2sat_garcia

deri_salinity

deri_seapres

deri_sos

deri_speccond

derived

descending

device

devicesegment

devicesegments

devmode

direction

directional

disable

mode

model

module

modulelist

na

nand

need12v

no

none

noresponse

normal

notblank

notimeout

nvflash

nvram

off

offset

offsetfromutc

on

open

operatingtime

optic2

outputformat

outputmode

p1

p2

p3

p4

parameters

path

pattern

streamusb

success

sustained

temperature

thresholding

tide

time

timeout

timetoepisode

tmp

tristate

true

twistactivation

type

uart

uart_idlelow

uarttest

uniform

unknown

usb

used

userunits

uvled

value

valve

valvesegment

valvesegments

verify

version

violations

visible

RBR#0014818revB 147

disabled

discover

download

dump

duration

e1

patternwrite

pause

paused

pauseresume

pcba

pending

voltage

warning

wave

wifi

wifitrig

write

yes

RBR#0014818revB 148

	Introduction
	Command processing and timeouts
	Timeouts, output blanking, and power saving
	Parameter modification
	Parameter naming constraints
	Command entry
	Parsing logger responses

	Formatting
	Security

	Quick start
	General overview
	Acquiring samples
	Channels
	Groups
	Schedules
	Configurations
	Datasets

	Enabling continuous sampling
	Serial streaming from serial port
	Setting the correct baud rate
	Enabling the serial streaming

	Integrating with a profiling float
	Introduction
	Buoyancy control
	Regime sampling mode
	Single schedule, single configuration RBRargo C.T.D example
	RBRargo BGC with multiple schedules and different configurations
	RBRargo introspection
	Providing platform details to end-users
	Sensor drift monitoring at the surface
	Energy tracking

	Tips for system integrators
	Deployment start time
	Sampling rates
	Future proofing development
	Power management and power cycling behaviour
	Error handling
	Electronic static discharge

	Migrate from Gen3 to Gen4 platforms
	Introduction
	Identifying a Gen4 platform
	Removed commands
	Improved commands and new parameters
	New commands

	Download stored data

	Commands
	Communications
	link
	sleep

	Realtime data
	poll

	Instrument details
	id
	id4
	instrument
	pcba

	Deployments
	clock
	verify
	enable
	disable
	deployment
	pause
	resume
	simulation

	Memory and datasets
	dataset
	download
	storage

	Configuration information and calibration
	channel
	calibration
	sensor
	group
	schedule
	config
	settings
	parameters

	Format of stored data
	Overview
	Sample data
	Events
	Metadata
	Related commands

	Sample data storage format
	Options
	Layout
	Related commands
	Errors

	Metadata layout
	TAG
	Metadata
	Logger
	Settings
	Deployment
	Configuration
	Schedules
	User groups
	Module group
	Channels

	Event data storage format
	Layout
	Event types and auxiliary data

	Channel labels
	Calibration equations and cross-channel dependencies
	lin - linear equation
	cub - cubic equation
	qad - quadratic equation
	tmp - temperature
	corr_pres2 - pressure with temperature correction
	corr_cond3 - conductivity with pressure and temperature correction
	deri_seapres - derivation of sea pressure from absolute pressure
	deri_depth - derivation of depth from absolute pressure
	pss78 - derivation of practical salinity
	Practical salinity of seawater

	deri_dyncorrT and deri_dyncorrS - derivation of practical salinity with dynamic correction
	deri_dyncorrT equation
	deri_dyncorrS equation

	corr_o2conc_garcia - O2 concentration compensated for salinity and pressure
	deri_o2sat_garcia - derivation of O2 saturation from concentration
	deri_sos - derivation of speed of sound
	deri_speccond - derivation of specific conductivity

	Information, warning, and error codes
	List of error and warning messages
	Warning
	Error

	Revision history
	Appendix
	Critical parameter keywords which cannot be used as a label

